×

Beilinson-Kato and Beilinson-Flach elements, Coleman-Rubin-Stark classes, Heegner points and a conjecture of Perrin-riou. (English) Zbl 1473.11119

Kurihara, Masato (ed.) et al., Development of Iwasawa theory – the centennial of K. Iwasawa’s birth. Proceedings of the international conference “Iwasawa 2017”, University of Tokyo, Tokyo, Japan, July 19–28, 2017. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 86, 141-193 (2020).
Summary: Our first goal in this article is to explain that a weak form of Perrin-Riou’s conjecture on the non-triviality of Beilinson-Kato classes follows as an easy consequence of the Iwasawa main conjectures. We also explain that the refined form of this conjecture in the \(p\)-supersingular case also follows from the classical Gross-Zagier formula and Kobayashi’s \(p\)-adic Gross-Zagier formula combined with this simple observation.
Our second goal is to set up a conceptual framework in the context of \(\Lambda\)-adic Kolyvagin systems to treat analogues of Perrin-Riou’s conjectures for motives of higher rank. We apply this general discussion in order to establish a link between Heegner points on a general class of CM abelian varieties and the (conjectural) Coleman-Rubin-Stark elements we introduce here. This can ben thought of as a higher dimensional version of Rubin’s results on rational points on CM elliptic curves.
For the entire collection see [Zbl 1462.11006].

MSC:

11G05 Elliptic curves over global fields
11G07 Elliptic curves over local fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11R23 Iwasawa theory
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)

References:

[1] K. B¨uy¨ukboduk and Antonio Lei, Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties,Proc. Lond. Math. Soc.(3), 111(6):1338-1378, 2015. · Zbl 1405.11073
[2] K. B¨uy¨ukboduk and A. Lei, Integral Iwasawa theory of Galois representations for non-ordinary primes,Math. Z., 286(1-2):361-398, 2017. · Zbl 1391.11150
[3] K. B¨uy¨ukboduk and Antonio Lei, Anticyclotomicp-ordinary Iwasawa Theory of Elliptic Modular Forms,Forum Mathematicum, 30(4):887-913, 2018. · Zbl 1423.11186
[4] K. B¨uy¨ukboduk and T. Ochiai, Main conjectures for higher rank nearly ordinary families - I, 2017, preprint, arXiv:1708.04494.
[5] K. B¨uy¨ukboduk, R. Pollack and S. Sasaki,p-adic Gross-Zagier formula at critical slope and a conjecture of Perrin-Riou - I, 2018, arXiv:1811.08216.
[6] K. B¨uy¨ukboduk, Λ-adic Kolyvagin systems,IMRN, 2011(14):3141-3206, 2011. · Zbl 1236.11091
[7] K. B¨uy¨ukboduk, Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements,Int. Math. Res. Not. IMRN, (21):5832-5873, 2014. · Zbl 1372.11101
[8] K. B¨uy¨ukboduk, On a conjecture of Perrin-Riou, 2015, preprint, 22 pages, http://arxiv.org/abs/1511.06131.
[9] F. Castella and M.-L. Hsieh, Heegner cycles andp-adicL-functions,Math. Ann., 370(1-2):567-628, 2018. · Zbl 1454.11122
[10] F. Castella and X. Wan, Perrin-Riou’s main conjecture for elliptic curves at supersingular primes,≥2018, preprint, arXiv:1607.02019v2.
[11] R. F. Coleman, Division values in local fields,Invent. Math., 53(2):91-116, 1979. · Zbl 0429.12010
[12] A. Dabrowski,p-adicL-functions of Hilbert modular forms,Ann. Inst. Fourier(Grenoble), 44(4):1025-1041, 1994. · Zbl 0808.11035
[13] D. Disegni,p-adic heights of Heegner points on Shimura curves,Algebra Number Theory, 9(7):1571-1646, 2015. · Zbl 1376.11054
[14] D. Disegni, Thep-adic Gross-Zagier formula on Shimura curves,Compos. Math., 153(10):1987-2074, 2017. · Zbl 1392.11042
[15] C. David and T. Weston, Local torsion on elliptic curves and the deformation theory of Galois representations,Math. Res. Lett., 15(2-3):599-611, 2008. · Zbl 1222.14070
[16] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphicLfunctions on GL(2),Ann. of Math.(2), 142(2):385-423, 1995. · Zbl 0847.11026
[17] D. Hansen, Iwasawa theory of overconvergent modular forms, I: Critical p-adicL-functions, 2015, preprint, 30 pages, http://arxiv.org/abs/1508.03982.
[18] H. Hida, Onp-adicL-functions of GL(2)×GL(2) over totally real fields, Ann. Inst. Fourier(Grenoble), 41(2):311-391, 1991. · Zbl 0725.11025
[19] B. Howard, Iwasawa theory of Heegner points on abelian varieties of GL2 type,Duke Math. J., 124(1):1-45, 2004. · Zbl 1068.11071
[20] M.-L. Hsieh, On theμ-invariant of anticyclotomicp-adicL-functions for CM fields,J. Reine Angew. Math., 688:67-100, 2014. · Zbl 1294.11195
[21] H. Hida and J. Tilouine, Anti-cyclotomic Katzp-adicL-functions and congruence modules,Ann. Sci. ´Ecole Norm. Sup.(4), 26(2):189-259, 1993. · Zbl 0778.11061
[22] N. M. Katz,p-adicL-functions for CM fields,Invent. Math., 49(3):199-297, 1978. · Zbl 0417.12003
[23] K. Kato,p-adic Hodge theory and values of zeta functions of modular forms, Ast´erisque, (295):ix, 117-290, 2004, Cohomologiesp-adiques et applications arithm´etiques. III. · Zbl 1142.11336
[24] V. A. Kolyvagin and D. Yu. Logach¨ev, Finiteness of SH over totally real fields,Izv. Akad. Nauk SSSR Ser. Mat., 55(4):851-876, 1991. · Zbl 0791.14019
[25] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., 152(1):1-36, 2003. · Zbl 1047.11105
[26] S. Kobayashi, Thep-adic Gross-Zagier formula for elliptic curves at supersingular primes,Invent. Math., 191(3):527-629, 2013. · Zbl 1300.11053
[27] V. A. Kolyvagin, Euler systems, In:Jacobiennes g´en´eralis´ees globale relatives,(Relative global generalized Jacobians), pages 435-483, 1990. · Zbl 0742.14017
[28] M. Kurihara and R. Pollack, Twop-adicL-functions and rational points on elliptic curves with supersingular reduction, In:L-functions and Galois representations, volume 320 ofLondon Math. Soc. Lecture Note Ser., pages 300-332, Cambridge Univ. Press, Cambridge, 2007. · Zbl 1148.11029
[29] A. Lei, D. Loeffler and S. L. Zerbes, Euler systems for modular forms over imaginary quadratic fields,Compos. Math., 151(9):1585-1625, 2015. · Zbl 1376.11050
[30] D. Loeffler and S. L. Zerbes, Wach modules and critical slopep-adicLfunctions,J. Reine Angew. Math., 679:181-206, 2013. · Zbl 1276.11192
[31] J. I. Manin, Non-Archimedean integration andp-adic Jacquet-Langlands L-functions,Uspekhi Mat. Nauk, 31(1(187)):5-54, 1976. · Zbl 0336.12007
[32] B. Mazur, Rational points of abelian varieties with values in towers of number fields,Invent. Math., 18:183-266, 1972. · Zbl 0245.14015
[33] B. Mazur and K. Rubin, Kolyvagin systems,Mem. Amer. Math. Soc., 168(799):viii+96, 2004. · Zbl 1055.11041
[34] J. Nekov´aˇr. Selmer complexes,Ast´erisque, (310):viii+559, 2006. · Zbl 1211.11120
[35] A. A. Panchishkin, Convolutions of Hilbert modular forms and their nonArchimedean analogues,Mat. Sb.(N.S.), 136(178)(4):574-587, 592, 1988. · Zbl 0656.10021
[36] B. Perrin-Riou, FonctionsL p-adiques, th´eorie d’Iwasawa et points de Heegner,Bull. Soc. Math. France, 115(4):399-456, 1987. · Zbl 0664.12010
[37] B. Perrin-Riou, Points de Heegner et d´eriv´ees de fonctionsL p-adiques, Invent. Math., 89(3):455-510, 1987. · Zbl 0645.14010
[38] B. Perrin-Riou, FonctionsL p-adiques d’une courbe elliptique et points rationnels,Ann. Inst. Fourier(Grenoble), 43(4):945-995, 1993. · Zbl 0840.11024
[39] B. Perrin-Riou, Th´eorie d’Iwasawa des repr´esentationsp-adiques sur un corps local,Invent. Math., 115(1):81-161, 1994, With an appendix by Jean-Marc Fontaine. · Zbl 0838.11071
[40] B. Perrin-Riou, FonctionsL p-adiques des repr´esentationsp-adiques, Ast´erisque, (229):198, 1995. · Zbl 0845.11040
[41] K. A. Ribet, Dividing rational points on Abelian varieties of CM-type, Compos. Math., 33:69-74, 1976. · Zbl 0331.14020
[42] D. E. Rohrlich, OnL-functions of elliptic curves and cyclotomic towers, Invent. Math., 75(3):409-423, 1984. · Zbl 0565.14006
[43] K. Rubin, Euler systems and modular elliptic curves, In:Galois representations in arithmetic algebraic geometry, Proceedings of the symposium, Durham,UK,July9-18, 1996, pages 351-367. Cambridge: Cambridge University Press, 1998. · Zbl 0952.11016
[44] K. Rubin,Euler systems, volume 147 ofAnnals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2000, Hermann Weyl Lectures. The Institute for Advanced Study. · Zbl 0977.11001
[45] C. Skinner, A converse to a theorem of Gross, Zagier, and Kolyvagin, 2014, http://arxiv.org/abs/1405.7294. · Zbl 1447.11071
[46] C. Skinner, Multiplicative reduction and the cyclotomic main conjecture for GL2,Pacific J. Math., 283(1):171-200, 2016. · Zbl 1368.11060
[47] J.-P. Serre and J. Tate, Good reduction of abelian varieties,Ann. of Math. (2), 88:492-517, 1968. · Zbl 0172.46101
[48] C. Skinner and E. Urban, The Iwasawa Main Conjectures for GL2,Invent. Math., 195(1):1-277, 2014. · Zbl 1301.11074
[49] C. Skinner and W. Zhang, Indivisibility of Heegner points in the multiplicative case, 2014, http://arxiv.org/abs/1407.1099.
[50] R. Venerucci, Exceptional zero formulae and a conjecture of Perrin-Riou, Invent. Math., 203(3):923-972, 2016. · Zbl 1406.11060
[51] R. Venerucci, On thep-converse of the Kolyvagin-Gross-Zagier theorem, Comment. Math. Helv., 91(3):397-444, 2016. · Zbl 1406.11061
[52] X. Wan, Iwasawa main conjecture for Rankin-Selbergp-adicL-functions, 2014, preprint, arXiv:1408.4044.
[53] X. Wan, Iwasawa Main Conjecture for Supersingular Elliptic Curves, 2014, http://arxiv.org/abs/1411.6352.
[54] X. Wan, Iwasawa Main Conjecture for Hilbert Modular Forms,Forum Math., Sigma, 3(e18), 2015. · Zbl 1379.11089
[55] H. Yoshida, On a conjecture of Shimura concerning periods of Hilbert modular forms,Amer. J. Math., 117(4):1019-1038, 1995. · Zbl 0841.11024
[56] X. Yuan, S.-W. Zhang and W. Zhang,The Gross-Zagier formula on Shimura curves, volume 184 ofAnnals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2013. · Zbl 1272.11082
[57] S.-W. Zhang, Gross-Zagier formula for GL(2). II, In:Heegner points and RankinL-series, volume 49 ofMath. Sci. Res. Inst. Publ., pages 191-214, Cambridge Univ. Press, Cambridge, 2004.
[58] W. Zhang, Selmer groups and the indivisibility of Heegner points,Camb. J. Math., 2(2):191-253, 2014 · Zbl 1390.11091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.