×

Anticyclotomic \(p\)-ordinary Iwasawa theory of elliptic modular forms. (English) Zbl 1423.11186

Let \(K\) be an imaginary quadratic field and let \(p\ge 5\) be a prime that splits as \(\mathfrak p \mathfrak p^c\) in \(K\). Let \(D_{\infty}\) be the anticyclotomic \(\mathbb Z_p\)-extension of \(K\). Let \(f\) be a normalized \(p\)-ordinary non-CM newform of weight \(k\) for \(\Gamma_0(N)\). Write \(N=p^a N^+ N^-\), where \(N^+\) is divisible only by primes other than \(p\) that split in \(K\) and where \(N^-\) is assumed to be squarefree and is divisible only by primes that are inert in \(K\). Let \(\alpha\) be a ring class character mod \(\mathfrak f \mathfrak p^{\infty}\) for which \(\alpha(\mathfrak p)\ne \alpha(\mathfrak p^c)\). Under certain assumptions on \(\mathfrak f\), the newform \(f\), and the Galois representation attached to \(f\), the authors prove the following: If \(N\) is divisible by an odd number of primes and \(p^2\nmid N\), then the characteristic ideal of a certain Greenberg Selmer group \(\mathcal{X}(f\otimes \alpha/D_{\infty})\) contains the projection \(\mathcal{L}_{f, 0}^{(\alpha)}\) of the Hida-Perrin-Riou \(p\)-adic \(L\)-function after inverting \(p\). If in addition \(p\nmid N\), then \(\mathcal{L}_{f, 0}^{(\alpha)}\) generates this characteristic ideal. If \(N\) is divisible by an even number of primes and \(p\nmid N\), then \(\mathcal{L}_{f, 0}^{(\alpha)}=0\) and \(\mathcal{X}(f\otimes \alpha/D_{\infty})\) has rank one. Moreover, the derivative of the Hida–Perrin-Riou \(p\)-adic \(L\)-function in the cyclotomic direction, restricted to the anticyclotomic line, is contained in the module obtained as a certain regulator times the characteristic ideal of \(\mathcal{X}(f\otimes \alpha/D_{\infty})_{\text{tor}}\) tensored with a finite extension of \(\mathbb Q_p\). Under additional hypotheses, it is shown that this derivative actually generates the module.
A new aspect of the present work is the use of Beilinson-Flach elements along the anticyclotomic tower, which allows both the definite and indefinite cases to be treated simultaneously.

MSC:

11R23 Iwasawa theory
11F11 Holomorphic modular forms of integral weight
11R20 Other abelian and metabelian extensions

References:

[1] A. Agboola and B. Howard, Anticyclotomic Iwasawa theory of CM elliptic curves. II, Math. Res. Lett. 12 (2005), no. 5-6, 611-621. · Zbl 1130.11058
[2] A. Agboola and B. Howard, Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1001-1048. · Zbl 1168.11023
[3] T. Arnold, Anticyclotomic main conjectures for CM modular forms, J. Reine Angew. Math. 606 (2007), 41-78. · Zbl 1138.11047
[4] M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic \mathbb{Z}_{p}-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1-64. · Zbl 1093.11037
[5] M. Bertolini, H. Darmon and K. Prasanna, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. 162 (2013), no. 6, 1033-1148. · Zbl 1302.11043
[6] K. Büyükboduk, Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements, Int. Math. Res. Not. IMRN 2014 (2014), no. 21, 5832-5873. · Zbl 1372.11101
[7] K. Büyükboduk, On the anticyclotomic Iwasawa theory of CM forms at supersingular primes, Rev. Mat. Iberoam. 31 (2015), no. 1, 109-126. · Zbl 1325.11114
[8] K. Büyükboduk, Deformations of Kolyvagin systems, Ann. Math. Qué. 40 (2016), no. 2, 251-302. · Zbl 1455.11146
[9] K. Büyükboduk and A. Lei, Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3) 111 (2015), no. 6, 1338-1378. · Zbl 1405.11073
[10] K. Büyükboduk and A. Lei, Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes, preprint (2016), .
[11] K. Büyükboduk and T. Ochiai, Main conjectures for higher rank nearly ordinary families. I, preprint (2017), .
[12] F. Castella, p-adic heights of Heegner points and Beilinson-Flach classes, J. Lond. Math. Soc. (2) 96 (2017), no. 1, 156-180. · Zbl 1400.11138
[13] F. Castella, C.-H. Kim and M. Longo, Variation of anticyclotomic Iwasawa invariants in Hida families, preprint (2015), ; to appear in Algebra Number Theory.
[14] M. Chida and M.-L. Hsieh, On the anticyclotomic Iwasawa main conjecture for modular forms, Compos. Math. 151 (2015), no. 5, 863-897. · Zbl 1326.11067
[15] M. Chida and M.-L. Hsieh, Special values of anticyclotomic L-functions for modular forms, J. Reine Angew. Math. (2016), 10.1515/crelle-2015-0072. · Zbl 1436.11053 · doi:10.1515/crelle-2015-0072
[16] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223-251. · Zbl 0359.14009
[17] C. Cornut and V. Vatsal, Nontriviality of Rankin-Selberg L-functions and CM points, L-Functions and Galois Representations, London Math. Soc. Lecture Note Ser. 320, Cambridge University Press, Cambridge (2007), 121-186. · Zbl 1153.11025
[18] H. Darmon and A. Iovita, The anticyclotomic main conjecture for elliptic curves at supersingular primes, J. Inst. Math. Jussieu 7 (2008), no. 2, 291-325. · Zbl 1146.11057
[19] M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families, Invent. Math. 163 (2006), no. 3, 523-580. · Zbl 1093.11065
[20] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math. 79 (1985), no. 1, 159-195. · Zbl 0573.10020
[21] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 3, 1-83. · Zbl 0645.10028
[22] H. Hida, Elementary Theory of L-Functions and Eisenstein Series, London Math. Soc. Student Texts 26, Cambridge University Press, Cambridge, 1993. · Zbl 0942.11024
[23] H. Hida and J. Tilouine, Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 2, 189-259. · Zbl 0778.11061
[24] B. Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439-1472. · Zbl 1139.11316
[25] B. Howard, The Iwasawa theoretic Gross-Zagier theorem, Compos. Math. 141 (2005), no. 4, 811-846. · Zbl 1207.11072
[26] M.-L. Hsieh, Special values of anticyclotomic Rankin-Selberg L-functions, Doc. Math. 19 (2014), 709-767. · Zbl 1314.11034
[27] H. Jacquet, Automorphic Forms on GL(2). Part II, Lecture Notes in Math. 278, Springer, Berlin, 1972. · Zbl 0243.12005
[28] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. · Zbl 0236.12010
[29] K. Kato, Generalized explicit reciprocity laws, Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 57-126. · Zbl 1024.11029
[30] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-Adiques et Applications Arithmétiques. III, Astérisque 295, Société Mathématique de France, Paris (2004), 117-290. · Zbl 1142.11336
[31] G. Kings, D. Loeffler and S. Zerbes, Rankin-Selberg Euler systems and p-adic interpolation, preprint (2014), .
[32] G. Kings, D. Loeffler and S. L. Zerbes, Rankin-Eisenstein classes for modular forms, preprint (2015), .
[33] G. Kings, D. Loeffler and S. L. Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math. 5 (2017), no. 1, 1-122. · Zbl 1428.11103
[34] A. Lei, D. Loeffler and S. L. Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653-771. · Zbl 1315.11044
[35] A. Lei, D. Loeffler and S. L. Zerbes, Euler systems for modular forms over imaginary quadratic fields, Compos. Math. 151 (2015), no. 9, 1585-1625. · Zbl 1376.11050
[36] D. Loeffler, O. Venjakob and S. L. Zerbes, Local epsilon isomorphisms, Kyoto J. Math. 55 (2015), no. 1, 63-127. · Zbl 1322.11112
[37] B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), no. 799, 1-96. · Zbl 1055.11041
[38] J. Nekovář, On p-adic height pairings, Séminaire de Théorie des Nombres (Paris 1990-91), Progr. Math. 108, Birkhäuser, Boston (1993), 127-202. · Zbl 0859.11038
[39] J. Nekovář, Selmer Complexes, Astérisque 310, Société Mathématique de France, Paris, 2007.
[40] M. Ohta, Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Compos. Math. 115 (1999), no. 3, 241-301. · Zbl 0967.11015
[41] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) (1984), no. 17, 1-130. · Zbl 0599.14020
[42] B. Perrin-Riou, Fonctions Lp-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. Lond. Math. Soc. (2) 38 (1988), no. 1, 1-32. · Zbl 0656.10019
[43] R. Pollack and K. Rubin, The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math. (2) 159 (2004), no. 1, 447-464. · Zbl 1082.11035
[44] D. E. Rohrlich, L-functions and division towers, Math. Ann. 281 (1988), no. 4, 611-632. · Zbl 0656.14013
[45] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25-68. · Zbl 0737.11030
[46] C. Skinner and E. Urban, The Iwasawa main conjectures for GL_{2}, Invent. Math. 195 (2014), no. 1, 1-277. · Zbl 1301.11074
[47] X. Wan, Iwasawa main conjecture for Rankin-Selberg p-adic L-functions, preprint (2014), .
[48] X. Wan, The Iwasawa main conjecture for Hilbert modular forms, Forum Math. Sigma 3 (2015), Article ID e18. · Zbl 1379.11089
[49] A. Wiles, Higher explicit reciprocity laws, Ann. Math. (2) 107 (1978), no. 2, 235-254. · Zbl 0378.12006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.