×

Lefschetz properties in algebra, geometry and combinatorics. Abstracts from the workshop held September 27 – October 3, 2020 (hybrid meeting). (English) Zbl 1473.00047

Summary: The themes of the workshop are the Weak Lefschetz Property – WLP – and the Strong Lefschetz Property – SLP. The name of these properties, referring to Artinian algebras, is motivated by the Lefschetz theory for projective manifolds, initiated by S. Lefschetz, and well established by the late 1950’s. In fact, Lefschetz properties of Artinian algebras are algebraic generalizations of the Hard Lefschetz property of the cohomology ring of a smooth projective complex variety. The investigation of the Lefschetz properties of Artinian algebras was started in the mid 1980’s and nowadays is a very active area of research.
Although there were limited developments on this topic in the 20th century, in the last years this topic has attracted increasing attention from mathematicians of different areas, such as commutative algebra, algebraic geometry, combinatorics, algebraic topology and representation theory. One of the main features of the WLP and the SLP is their ubiquity and the quite surprising and still not completely understood relations with other themes, including linear configurations, interpolation problems, vector bundle theory, plane partitions, splines, \(d\)-webs, differential geometry, coding theory, digital image processing, physics and the theory of statistical designs, etc. among others.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
13-06 Proceedings, conferences, collections, etc. pertaining to commutative algebra
05-06 Proceedings, conferences, collections, etc. pertaining to combinatorics
13D02 Syzygies, resolutions, complexes and commutative rings
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
05E40 Combinatorial aspects of commutative algebra
05E45 Combinatorial aspects of simplicial complexes
06A07 Combinatorics of partially ordered sets
06A11 Algebraic aspects of posets
13A02 Graded rings
13A50 Actions of groups on commutative rings; invariant theory
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14L30 Group actions on varieties or schemes (quotients)
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14M10 Complete intersections
14M15 Grassmannians, Schubert varieties, flag manifolds
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

Software:

Macaulay2
Full Text: DOI

References:

[1] M. Boij and A. Iarrobino. Duality for central simple modules of Artinian Gorenstein algebras. Preprint.
[2] L. Chiantini and J. Migliore. Sets of points which project to complete intersections. Trans. AMS, to appear. With an appendix by the authors and A. Bernardi, G. Denham, G. Favacchio, B. Harbourne, T. Szemberg and J. Szpond.
[3] T. Church, J. S. Ellenberg, and B. Farb. FI-modules and stability for representations ofsymmetric groups. Duke Math. J., 164(9): 1833-1910, 2015. · Zbl 1339.55004
[4] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and config-urations of points with an unexpected geometric property. Compos. Math., 154(10): 2150-2194, 2018. · Zbl 1408.14174
[5] B. Costa and R. Gondim. The Jordan type of graded Artinian Gorenstein algebras, Adv. in Appl. Math. 111: 101941, 27 pp., 2019. · Zbl 1441.13045
[6] J. Draisma. Noetherianity up to symmetry. InCombinatorial algebraic geometry, volume 2108 of Lecture Notes in Math., pages 33-61. Springer, Cham, 2014. · Zbl 1328.13002
[7] B. Harbourne, J. Migliore, U. Nagel, and Z. Teitler. Unexpected hypersurfaces and where to find them. Michigan Math. J., to appear. · Zbl 1469.14107
[8] T. Harima and J. Watanabe. The central simple modules of Artinian Gorenstein alge-bras, J. Pure Appl. Algebra 210(2): 447-463, 2007. · Zbl 1125.13003
[9] A. Iarrobino: Associated Graded Algebra of a Gorenstein Artin Algebra, Amer. Math. Soc, Memoir Vol. 107 #514, 1994. · Zbl 0793.13010
[10] A. Iarrobino and P. Macias Marques. Symmetric Decomposition of the Associated Graded Algebra of an Artinian Gorenstein Algebra, to appear in J. Pure Appl. Al-gebra 225 #3, March 2021, 49p., arXiv:1812.03586. · Zbl 1453.13067
[11] P. Pokora, T. Szemberg, and J. Szpond. Unexpected properties of the klein configura-tion of 60 points in P 3 , Research in Pairs 2020, OWP-2020-19, DOI:10.14760/OWP-2020-19. · doi:10.14760/OWP-2020-19
[12] J. Szpond. Unexpected curves and Togliatti-type surfaces. Math. Nachr., 293:158-168, 2020. · Zbl 1520.14103
[13] A. Wiebe. The Lefschetz property for componentwise linear ideals and Gotzmann ideals. Commun. Algebra 32: 4601 -4611, 2004. · Zbl 1089.13500
[14] Tadahito Harima, Toshiaki Maeno, Hideaki Morita, Yasuhide Numata, Akihito Wachi, and Junzo Watanabe, The Lefschetz properties, Lecture Notes in Mathematics 2080 (2013), Springer, Heidelberg, xx+250 pp. · Zbl 1284.13001
[15] Tadahito Harima and Junzo Watanabe, The finite free extension of Artinian K-algebras with the strong Lefschetz property, Rendiconti del Seminario Matematico della Università di Padova 110 (2003), 119-146. · Zbl 1150.13305
[16] Anthony Iarrobino, The Hilbert function of a Gorenstein Artin algebra, Commutative alge-bra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 15 (1989), 347-364. · Zbl 0733.13008
[17] Anthony Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, Memoirs of the American Mathematical Society 107 (1994), no. 514, viii+115 pp. · Zbl 0793.13010
[18] Anthony Iarrobino, Pedro Macias Marques, Chris McDaniel, Artinian algebras and Jordan type, preprint, https://arxiv.org/abs/1802.07383. References
[19] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, and T. Szem-berg. Bounded negativity and arrangements of lines. Int. Math. Res. Not. IMRN, (19): 9456-9471, 2015. · Zbl 1330.14007
[20] T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Seceleanu, and T. Szemberg. Neg-ative curves on symmetric blowups of the projective plane, resurgences, and Waldschmidt constants. Int. Math. Res. Not. IMRN, (24): 7459-7514, 2019. · Zbl 1477.14013
[21] T. Bauer, B. Harbourne, A. L. Knutsen, A. Küronya, S. Müller-Stach, X. Roulleau, and T. Szemberg. Negative curves on algebraic surfaces. Duke Math. J., 162(10): 1877-1894, 2013. · Zbl 1272.14009
[22] I. Cheltsov and C. Shramov. Finite collineation groups and birational rigidity. Sel. Math., New Ser., 25(5): 68, 2019. Id/No 71. · Zbl 1440.14061
[23] L. Chiantini and J. Migliore. Sets of points which project to complete intersections. Trans. AMS, to appear. With an appendix by the authors and A. Bernardi, G. Denham, G. Favac-chio, B. Harbourne, T. Szemberg and J. Szpond.
[24] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and configurations of points with an unexpected geometric property. Compos. Math., 154(10): 2150-2194, 2018. · Zbl 1408.14174
[25] R. Di Gennaro, G. Ilardi, and J. Vallès. Singular hypersurfaces characterizing the Lefschetz properties. J. Lond. Math. Soc. (2), 89(1): 194-212, 2014. · Zbl 1290.13013
[26] M. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg, and H. Tutaj-Gasińska. Resurgences for ideals of special point configurations in P N coming from hyperplane ar-rangements. J. Algebra, 443: 383-394, 2015. · Zbl 1329.13035
[27] B. Harbourne, J. Migliore, U. Nagel, and Z. Teitler. Unexpected hypersurfaces and where to find them. Michigan Math. J., to appear. · Zbl 1469.14107
[28] F. Klein. Gesammelte mathematische Abhandlungen. Erster Band: Liniengeometrie. Grundlegung der Geometrie. Zum Erlanger Programm. Herausgegeben von R. Fricke und A. Ostrowski. (Von F. Klein mit ergänzenden Zusätzen versehen.) Mit einem Bildnis Kleins. Berlin: J. Springer, XII u. 612 S. 8 • (1922) (1921)., 1921. · JFM 48.0012.02
[29] P. Pokora, T. Szemberg, and J. Szpond. Unexpected properties of the Klein configuration of 60 points in P 3 , Research in Pairs 2020, OWP-2020-19, DOI:10.14760/OWP-2020-19. · doi:10.14760/OWP-2020-19
[30] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canadian J. Math., 6:274-304, 1954. · Zbl 0055.14305
[31] T. Kimura. Introduction to prehomogeneous vector spaces, volume of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2003. Trans-lated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author. · Zbl 1035.11060
[32] T. Maeno and Y. Numata. Sperner property and finite-dimensional Gorenstein algebras associated to matroids. J. Commut. Algebra, 8(4): 549-570, 2016. · Zbl 1360.13048
[33] T. Nagaoka and A. Yazawa. Strict log-concavity of the Kirchhoff polynomial and its appli-cations. Sém. Lothar. Combin., 84B:Art. 38, 12 pp.-11, 2020. · Zbl 1447.05051
[34] H. Rubenthaler. Algèbres de Lie et espaces préhomogènes, volume 44 of Travaux en Cours [Works in Progress]. · Zbl 0840.17007
[35] HermannÉditeurs des Sciences et des Arts, Paris, 1992. With a fore-word by Jean-Michel Lemaire.
[36] N. Altafi. Jordan types with small parts for Artinian Gorenstein algebras of codimension three, arXiv:2008.02338.
[37] N. Altafi, A. Iarrobino, and L. Khatami. Complete intersection Jordan types in height two, J. Algebra 557: 224-277, 2020. · Zbl 1440.13084
[38] M. Boij. Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc., 31(1): 11-16, 1999. · Zbl 0940.13008
[39] M. Boij, J. Migliore, R. M. Miró-Roig, U. Nagel, and F. Zanello. On the weak Lefschetz property for Artinian Gorenstein algebras of codimension three, J. Algebra, 403: 48-68, 2014. · Zbl 1327.13061
[40] B. Costa and R. Gondim. The Jordan type of graded Artinian Gorenstein algebras, Adv. in Appl. Math., 111: 101941, 27 pp., 2019. · Zbl 1441.13045
[41] J. Elias and M. E. Rossi. The structure of the inverse system of Gorenstein k-algebras, Adv. Math., 314: 306-327, 2017. · Zbl 1368.13023
[42] T. Harima and J. Watanabe. The central simple modules of Artinian Gorenstein algebras, J. Pure Appl. Algebra, 210(2): 447-463, 2007. · Zbl 1125.13003
[43] T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi, and J. Watanabe. The Lefschetz properties. Lecture Notes in Mathematics, 2080. Springer, Heidelberg (2013). xx+250 pp. · Zbl 1284.13001
[44] A. Iarrobino and V. Kanev. Power Sums, Gorenstein Algebras, and Determinantal Va-rieties, Appendix C by Iarrobino and Steven L. Kleiman The Gotzmann Theorems and the Hilbert scheme, Lecture Notes in Mathematics, 1721. Springer-Verlag, Berlin. (1999), 345+xxvii p. · Zbl 0942.14026
[45] A. Iarrobino, P. Macias Marques, and C. McDaniel. Artinian algebras and Jordan type, arXiv:1802.07383, J. Commut. Algebra., 42p., to appear.
[46] J.O. Kleppe. Families of Artinian and one-dimensional algebras, J. Algebra, 311(2): 665-701, 2007. · Zbl 1129.14009
[47] R. Miró-Roig and Q. H. Tran. The weak Lefschetz property for Artinian Gorenstein algebras of codimension three, J. Pure Appl. Algebra, 224(7): 106305, pp., 2020. · Zbl 1437.13028
[48] J. Watanabe and M. de Bondt. On the theory of Gordan-Noether on homogeneous forms with zero Hessian (improved version), arXiv:1703.07264. References · Zbl 1455.14118
[49] N. Altafi. Jordan types with small parts for Artinian Gorenstein algebras of codimension three, arXiv:2008.02338.
[50] R. Gondim and G. Zappalà. On mixed Hessians and the Lefschetz properties, J. Pure Appl. Algebra, 223(10): 4268-4282, 2019. · Zbl 1423.13009
[51] T. Maeno and J. Watanabe. Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53: 593-603, 2009. References · Zbl 1200.13031
[52] H. Brenner and A. Kaid. Syzygy Bundles on P 2 and the Weak Lefschetz Property,Illinois Journal of Mathematics, 51(4): 1299-1308, 2007. · Zbl 1148.13007
[53] G. Failla, Z. Flores, and Z. Peterson. On the Weak Lefschetz Property for Vector Bundles on P 2 , Journal of Algebra, 568 (2021): 22-34. · Zbl 1461.13022
[54] T. Harima, J.C. Migliore, U. Nagel, J. Watanabe. The Weak and Strong Lefschetz Properties for Artinian K-algebras, Journal of Algebra, 262(1): 99-126, 2003. · Zbl 1018.13001
[55] C. Okonek, M. Schneider, and H. Spindler. Vector Bundles on Complex Projective Space, Birkhäuser Boston, Boston, MA, 1980 · Zbl 0438.32016
[56] J. Watanabe J. A Note on Complete Intersections of Height Three, Proceedings of the American Mathematical Society, 126(11): 3161-3168, 1998. References · Zbl 0901.13019
[57] L. Colarte, E. Mezzetti, and R. M. Miró-Roig. On the arithmetic Cohen-Macaulayness of Togliatti varieties, submitted. · Zbl 1470.14095
[58] L. Colarte, E. Mezzetti, R. M. Miró-Roig, and M. Salat. Togliatti systems associated to the dihedral group and the weak Lefschetz property, submitted. · Zbl 1523.14079
[59] L. Colarte and R. M. Miró-Roig. Minimal set of binomial generators for certain Veronese 3-fold projections, Journal of Pure and Applied Algebra, 224: 768-788, 2020. · Zbl 1430.13028
[60] L. Colarte and R. M. Miró-Rogi. The canonical module of GT-varieties and the normal bundle of RL-varieties, submitted. · Zbl 1483.14084
[61] G. Ilardi and J. Vallès. Eight cubes of linear forms in P n , arXiv:1910.04035.
[62] Ralf Fröberg. An inequality for Hilbert series of graded algebras. Math. Scand., 56: 117-144, 1985. · Zbl 0582.13007
[63] D. Grayson and M. Stillman. Macaulay2, a software system for research in algebraic geom-etry, available at www.math.uiuc.edu/Macaulay2.
[64] J. C. Migliore, R. M. Miró-Roig, and U. Nagel. On the weak Lefschetz property for powers of linear forms, Algebra Number Theory, 6(3): 487-526, 2012. · Zbl 1257.13003
[65] R. M. Miró-Roig. Harbourne, Schenck and Seceleanu’s conjecture, J. Algebra 462: 54-66, 2016. · Zbl 1348.13025
[66] R. M. Miró-Roig and Q. H. Tran. On the weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms, J. Algebra 551: 209-231, 2020. · Zbl 1434.14005
[67] U. Nagel and B. Trok. Interpolation and the weak Lefschetz property, Trans. Amer. Math. Soc., 372(12): 8849-8870, 2019. · Zbl 1426.13008
[68] H. Schenck and A. Seceleanu. The weak Lefschetz property and powers of linear forms in K[x, y, z], Proc. Amer. Math. Soc., 138(7): 2335-2339, 2010. · Zbl 1192.13013
[69] B. Sturmfels and Z. Xu. Sagbi bases of Cox-Nagata rings, Journal of the European Mathe-matical Society, 12(2): 429-459, 2010. · Zbl 1202.14053
[70] E. Dufrense. Separating Invariants and Finite Reflection Groups, Adv. in Math., 221: 1979-1989, 2009. · Zbl 1173.13004
[71] C. McDaniel and L. Smith. Equivariant Coinvariant and Bott-Samelson Rings : Watanabe’s Bold Conjecture, J. of Pure and Applied Algebra, to appear. · Zbl 1466.13005
[72] C. Mc Daniel, L. Smith, and J. Watanabe. The Minimal Prime Ideals of Equivariant Coin-variant Algebras, nonPreprint, AG-Invariantentheorie, 2019.
[73] J. Watanabe. Some Remarks on Cohen-Macaulay Rings with Many Zero Divisors and an Application, J. of Algebra, 39: 1-14, 1976. · Zbl 0327.13015
[74] L. Colarte, E. Mezzetti, and R. M. Miró-Roig. On the arithmetic Cohen-Macaulayness of Togliatti varieties, submitted. · Zbl 1470.14095
[75] L. Colarte, E. Mezzetti, R. M. Miró-Roig, and M. Salat. Togliatti systems associated to the dihedral group and the weak Lefschetz property, submitted. · Zbl 1523.14079
[76] L. Colarte and R. M. Miró-Roig. Minimal set of binomial generators for certain Veronese 3-fold projections. J. Pure Appl. Algebra, 224: 768-788, 2020. · Zbl 1430.13028
[77] E. Mezzetti and R. M. Miró-Roig. Togliatti systems and Galois coverings. J. Algebra 509: 263-291, 2018. · Zbl 1395.13019
[78] E. Mezzetti, R. M. Miró-Roig, and G. Ottaviani. Laplace Equations and the Weak Lefschetz Property, Canad. J. Math. 65: 634-654, 2013. · Zbl 1271.13036
[79] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and configurations of points with an unexpected geometric property, Compositio Mathematica, 154: 2150 -2194, 2018. · Zbl 1408.14174
[80] G. Favacchio, E. Guardo, B. Harbourne, and J. Migliore. Expecting the unexpected: quanti-fying the persistence of unexpected hypersurfaces, arXiv:2001.10366. · Zbl 1473.13016
[81] B. Harbourne, J. Migliore, U. Nagel, and Z. Teitler. Unexpected hypersurfaces and where to find them, Michigan Mathematical Journal, to appear. · Zbl 1469.14107
[82] T. Abe and A. Dimca. Splitting types of bundles of logarithmic vector fields, Int. J. Math. 29(8): Article ID 1850055, 20 p., 2018. · Zbl 1394.14020
[83] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and configurations of points with an unusual geometric property, Compositio Math. 154: 2150-2194, 2018. · Zbl 1408.14174
[84] A. Dimca. Unexpected curves in P 2 , line arrangements, and minimal degree of Jacobian relations, arXiv:1911.07703.
[85] A. Dimca and G. Sticlaru. Free and Nearly Free Curves vs. Rational Cuspidal Plane Curves, Publ. Res. Inst. Math. Sci. 54(1): 163-179, 2018. · Zbl 1391.14057
[86] G. Malara, P. Pokora, and H. Tutaj-Gasińska. On 3-syzygy and unexpected plane curves, arXiv:2007.04162. · Zbl 1477.14087
[87] S. Marchesi and J. Vallès. Nearly free curves and arrangements: a vector bundle point of view, Math. Proc. of the Cambridge Phil. Soc., to appear. · Zbl 1476.14076
[88] K. Adiprasito, J. Huh, and E. Katz. Hodge theory for combinatorial geometries, arXiv:1511.02888. · Zbl 1442.14194
[89] C. De Concini and C. Procesi. Complete symmetric varieties. In Invariant theory (Monte-catini, 1982), Volume 996 of Lecture Notes in Math., pages 1-44. Springer, Berlin, 1983. · Zbl 0581.14041
[90] C. De Concini and C. Procesi. Complete symmetric varieties II. Intersection theory, In Algebraic groups and related topics (Kyoto/Nagoya, 1983), volume 6 of Adv. Stud. Pure Math., pages 481-513. North-Holland, Amsterdam, 1985. · Zbl 0596.14041
[91] D. Laksov, A. Lascoux, and A. Thorup. On Giambelli’s theorem on complete correlations, Acta Math., 162(3-4):143-199, 1989. · Zbl 0695.14023
[92] M.Michalek, L. Monin, and J. Wiśniewski. Maximum likelihood degree and space of orbits of a C * -action, arXiv:2004.07735.
[93] B. Sturmfels and C. Uhler. Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math., 62(4):603-638, 2010. References · Zbl 1440.62255
[94] P. Etingof, E. Gorsky, and I. Losev. Representations of rational Cherednik algebras with minimal supports and torus knots, Advances in Mathematics, 277: 124-180, 2015. · Zbl 1321.16020
[95] B. Sagan. The Symmetric Group, Graduate Texts in Mathematics 203, Springer New York, 2001. · Zbl 0964.05070
[96] K. Yanagawa. When is a Specht ideal Cohen-Macaulay?, Journal of Commutative Algebra, to appear. · Zbl 1481.13026
[97] J. Biermann, H. de Alba, F. Galetto, S. Murai, U. Nagel, A. O’Keefe, T. Römer, and A. Seceleanu. Betti numbers of symmetric shifted ideals, arXiv:1907.04288. · Zbl 1448.13027
[98] P. Etingof, E. Gorsky, and I. Losev. Representations of rational Cherednik algebras with minimal support and torus knots, Advances in Mathematics, 277: 124-180, 2015. · Zbl 1321.16020
[99] A. Brookner, P. Etingof, D. Corwin, and S. Sam. On Cohen-Macaulayness of Sn-invariant subspace arrangements, Int. Math. Res. Not. IMRN, 2016(7): 2104-2126, 2016. · Zbl 1404.14063
[100] T. Harima, A. Wachi, and J. Watanabe. The quadratic complete intersections associated with the action of the symmetric group, Illinois J. Math., 59(1): 99-113, 2015. · Zbl 1336.13009
[101] M. Hochster and J. A. Eagon. Cohen-Macaulay rings, invariant theory and the generic perfection of determinantal Loci, American J. Math. 93(4): 1020-1058, 1971. · Zbl 0244.13012
[102] J. P. Park and Y. S. Shin. The minimal free graded resolution of a star-configuration in P n , J. Pure Appl. Algebra, 219(6): 2124-2133, 2015. · Zbl 1310.13023
[103] J. Watanabe and K. Yanagawa. Vandermonde determinantal ideals, Math. Scand. 125: 179-184, 2019. · Zbl 1476.13016
[104] K. Yanagawa. When is a Specht ideal Cohen-Macaulay?, J. Commut. Algebra, to appear. References · Zbl 1481.13026
[105] D. Abramovich, K. Karu, K. Matsuki, and J. W lodarczyk. Torification and factorization of birational maps, J. Amer. Math. Soc., 15(3): 531-572, 2002. · Zbl 1032.14003
[106] K. Adiprasito, J. Huh, and E. Katz. Hodge theory for combinatorial geometries, Ann. of Math. (2), 188 (2018), no. 2, 381-452, 2018. · Zbl 1442.14194
[107] F. Ardila, G. Denham, and J. Huh, Lagrangian geometry of matroids, arXiv:2004.13116.
[108] B. Fleming and K. Karu, Hard Lefschetz theorem for simple polytopes, J. Algebraic Com-bin., 32(2): 227-239, 2010. · Zbl 1210.52005
[109] P. McMullen, On simple polytopes, Invent. Math. 113(2): 419-444, 1993. · Zbl 0803.52007
[110] V. A. Timorin, An analogue of the Hodge-Riemann relations for simple convex polyhedra, Uspekhi Mat. Nauk 54 no. 2(326): 113-162, 1999. · Zbl 0944.52005
[111] Jaros law W lodarczyk, Decomposition of birational toric maps in blow-ups & blow-downs, Trans. Amer. Math. Soc. 349(1): 373-411, 1997. · Zbl 0867.14005
[112] D. Bernstein and A. Iarrobino. A non-unimodal graded Gorenstein Artin algebra in codi-mension five, Communications in Algebra, 20(8): 2323-2336, 1992. · Zbl 0761.13001
[113] J. Migliore, U. Nagel, and F. Zanello. On the degree two entry of a Gorenstein h−vector and a conjecture of Stanley, Proceedings of the American Mathematical Society, 136(8): 2755-2762, 2008. · Zbl 1148.13011
[114] J. Migliore and F. Zanello. Stanley’s nonunimodal Gorensteinh-vector is optimal, Proceed-ings of the American Mathematical Society, 145(1): 1-9, 2017. · Zbl 1350.13014
[115] R. P. Stanley. Hilbert functions of graded algebras, Advances in Mathematics, 28(1) 57-83, 1978. · Zbl 0384.13012
[116] R. P. Stanley. Combinatorics and commutative algebra, Springer Science and Business Me-dia, vol. 41 (2007).
[117] F. Zanello. Stanley’s theorem on codimension 3 Gorenstein h−vectors, Proceedings of the American Mathematical Society, 134(1): 5-8, 2006. Waring problems and the Lefschetz properties Rodrigo Gondim (joint work with Thiago Dias, Rodrigo Gondim) · Zbl 1094.13028
[118] The Waring problem, in number theory, asks for each exponent k, what is the
[119] H. Huang, M. Micha lek, E. Ventura. Vanishing Hessian, wild forms and their border VSP, arXiv:1912.13174. References · Zbl 1448.14004
[120] M. Aschenbrenner and C. Hillar. Finite generation of symmetric ideals, Trans. Amer. Math. Soc., 359(11): 5171-5192, 2007. · Zbl 1129.13008
[121] T. Church, J.S. Ellenberg, and B. Farb. F I-modules and stability for representations of symmetric groups, Duke Math. J., 164(9): 1833-1910, 2015. · Zbl 1339.55004
[122] T. Church, J.S. Ellenberg, B. Farb, and R. Nagpal. F I-modules over Noetherian rings, Geom. Topol. 18(5): 2951-2984, 2014. · Zbl 1344.20016
[123] J. Draisma, Noetherianity up to symmetry, In: Combinatorial algebraic geometry, 33-61, Lecture Notes in Math. 2108, Springer, 2014. · Zbl 1328.13002
[124] C.J. Hillar and S. Sullivant. Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math., 229(1): 1-25, 2012. · Zbl 1233.13012
[125] D.V. Le, U. Nagel, H.D. Nguyen, and T. Römer. Castelnuovo-Mumford regularity up to symmetry, Int. Math. Res. Not. IMRN, to appear. · Zbl 1478.13022
[126] D.V. Le, U. Nagel, H.D. Nguyen, and T. Römer. Codimension and projective dimension up to symmetry, Math. Nachr., 293(2): 346-362, 2020. · Zbl 1509.13012
[127] U. Nagel and T. Römer. Equivariant Hilbert series in non-noetherian polynomial rings, J. Algebra, 486: 204-245, 2017. · Zbl 1372.13016
[128] U. Nagel and T. Römer. FI-and OI-modules with varying coefficients, J. Algebra 535: 286-322, 2019. · Zbl 1485.13033
[129] S.V. Sam and A. Snowden. GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc., 368(2): 1097-1158, 2016. · Zbl 1436.13012
[130] S.V. Sam and A. Snowden. Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30(1): 159-203, 2017. Reporters: Piotr Pokora and Justyna Szpond · Zbl 1347.05010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.