×

On the degree two entry of a Gorenstein \(h\)-vector and a conjecture of Stanley. (English) Zbl 1148.13011

Let \(A = \bigoplus_{i \geq 0}A_i\) denote a standard graded Gorenstein \(k\)-algebra with \(A_0 = k\) a field. Then the Hilbert series \(F(R,t) = \sum_{i \geq 0} \dim_k A_i t^i\) provides the \(h\)-vector \((h_0,h_1,\ldots,h_e)\) of \(A.\) Therefore \(h_0 = h_e = 1\) and \(h_1 = \dim_k A_1 - \dim A =:r.\) Not so much is known about the degree two entry \(h_2.\) For \(r \geq 2\) and \(e \geq 4\) the authors define \(f(r,e)\) the least value of the degree two component \(h_2.\) The main result of the paper is a lower bound on \(f(r,e).\)
This follows by a clever combination of M. Green’s theorem [Algebraic curves and projective geometry, Proc. Conf., Trento/Italy 1988, Lect. Notes Math. 1389, 76–86 (1989; Zbl 0717.14002)], with the a classical result of Macaulay. In the case of \(e = 4,\) i.e. of the \(h\)-vector \((1,r,h_2,r,1),\) let \(f(r) = f(r,4).\) R. P. Stanley, see [Adv. Math. 28, 57–83 (1978; Zbl 0384.13012)], conjectured that \(\lim f(r)/r^{2/3} = 6^{2/3}.\) This is proved by the authors as an outcome of their lower bound on \(f(r).\) By recent work of M. Boij and the third author, see [Proc. Am. Math. Soc. 135, No. 9, 2713–2722 (2007; Zbl 1144.13011)], it turns out that the lower bound on \(f(r)\) is not sharp.

MSC:

13E10 Commutative Artinian rings and modules, finite-dimensional algebras
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series

References:

[1] Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J. Reine Angew. Math. 583 (2005), 163 – 174. · Zbl 1077.52011 · doi:10.1515/crll.2005.2005.583.163
[2] David Bernstein and Anthony Iarrobino, A nonunimodal graded Gorenstein Artin algebra in codimension five, Comm. Algebra 20 (1992), no. 8, 2323 – 2336. · Zbl 0761.13001 · doi:10.1080/00927879208824466
[3] A. M. Bigatti and A. V. Geramita, Level algebras, lex segments, and minimal Hilbert functions, Comm. Algebra 31 (2003), no. 3, 1427 – 1451. · Zbl 1094.13520 · doi:10.1081/AGB-120017774
[4] Mats Boij, Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys, Comm. Algebra 23 (1995), no. 1, 97 – 103. · Zbl 0816.13011 · doi:10.1080/00927879508825208
[5] Mats Boij and Dan Laksov, Nonunimodality of graded Gorenstein Artin algebras, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1083 – 1092. · Zbl 0836.13001
[6] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. · Zbl 0788.13005
[7] Anthony V. Geramita, Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals, The Curves Seminar at Queen’s, Vol. X (Kingston, ON, 1995) Queen’s Papers in Pure and Appl. Math., vol. 102, Queen’s Univ., Kingston, ON, 1996, pp. 2 – 114. · Zbl 0864.14031
[8] Mark Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 76 – 86. · doi:10.1007/BFb0085925
[9] Craig Huneke, Hyman Bass and ubiquity: Gorenstein rings, Algebra, \?-theory, groups, and education (New York, 1997) Contemp. Math., vol. 243, Amer. Math. Soc., Providence, RI, 1999, pp. 55 – 78. · Zbl 0960.13008 · doi:10.1090/conm/243/03686
[10] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman. · Zbl 0942.14026
[11] Anthony Iarrobino and Hema Srinivasan, Artinian Gorenstein algebras of embedding dimension four: components of \Bbb P\?\?\?(\Bbb H) for \Bbb H=(1,4,7,…,1), J. Pure Appl. Algebra 201 (2005), no. 1-3, 62 – 96. · Zbl 1107.13020 · doi:10.1016/j.jpaa.2004.12.015
[12] Peter Kleinschmidt, Über Hilbert-Funktionen graduierter Gorenstein-Algebren, Arch. Math. (Basel) 43 (1984), no. 6, 501 – 506 (German). · Zbl 0533.13010 · doi:10.1007/BF01190951
[13] A.R. Klivans and A. Shpilka: Learning arithmetic circuits via partial derivatives, in: Proc. 16th Annual Conference on Computational Learning Theory, Morgan Kaufmann Publishers (2003), 463-476. · Zbl 1274.68327
[14] U. Nagel: Empty simplices of polytopes and graded Betti numbers, Discrete Comput. Geom. 39 (2008), 389-410. · Zbl 1140.52009
[15] R. Pandharipande, Three questions in Gromov-Witten theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 503 – 512. · Zbl 1047.14043
[16] Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417 – 420. · Zbl 0235.13016
[17] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57 – 83. · Zbl 0384.13012 · doi:10.1016/0001-8708(78)90045-2
[18] Richard P. Stanley, Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1983. · Zbl 0537.13009
[19] Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0838.13008
[20] Richard P. Stanley, A monotonicity property of \?-vectors and \?*-vectors, European J. Combin. 14 (1993), no. 3, 251 – 258. · Zbl 0799.52008 · doi:10.1006/eujc.1993.1028
[21] Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236 – 238. · Zbl 0427.52006 · doi:10.1016/0001-8708(80)90050-X
[22] Fabrizio Zanello, Stanley’s theorem on codimension 3 Gorenstein \?-vectors, Proc. Amer. Math. Soc. 134 (2006), no. 1, 5 – 8. · Zbl 1094.13028
[23] Fabrizio Zanello, When is there a unique socle-vector associated to a given \?-vector?, Comm. Algebra 34 (2006), no. 5, 1847 – 1860. · Zbl 1185.13020 · doi:10.1080/00927870500542812
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.