×

The coalescent structure of continuous-time Galton-Watson trees. (English) Zbl 1472.60141

Summary: Take a continuous-time Galton-Watson tree. If the system survives until a large time \(T\), then choose \(k\) particles uniformly from those alive. What does the ancestral tree drawn out by these \(k\) particles look like? Some special cases are known but we give a more complete answer. We concentrate on near-critical cases where the mean number of offspring is \(1 + \mu/T\) for some \(\mu \in \mathbb{R}\), and show that a scaling limit exists as \(T \to \infty\). Viewed backwards in time, the resulting coalescent process is topologically equivalent to Kingman’s coalescent, but the times of coalescence have an interesting and highly nontrivial structure. The randomly fluctuating population size, as opposed to constant size populations where the Kingman coalescent more usually arises, have a pronounced effect on both the results and the method of proof required. We give explicit formulas for the distribution of the coalescent times, as well as a construction of the genealogical tree involving a mixture of independent and identically distributed random variables. In general subcritical and supercritical cases it is not possible to give such explicit formulas, but we highlight the special case of birth-death processes.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G09 Exchangeability for stochastic processes

References:

[1] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1-28. · Zbl 0722.60013 · doi:10.1214/aop/1176990534
[2] Aldous, D. and Popovic, L. (2005). A critical branching process model for biodiversity. Adv. in Appl. Probab. 37 1094-1115. · Zbl 1099.92053 · doi:10.1239/aap/1134587755
[3] Aldous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3-48. · Zbl 0930.60096 · doi:10.2307/3318611
[4] Athreya, K. B. (2012). Coalescence in critical and subcritical Galton-Watson branching processes. J. Appl. Probab. 49 627-638. · Zbl 1408.60078 · doi:10.1239/jap/1346955322
[5] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York.
[6] Donnelly, P. and Kurtz, T. G. (1999). Particle representations for measure-valued population models. Ann. Probab. 27 166-205. · Zbl 0956.60081 · doi:10.1214/aop/1022677258
[7] Durrett, R. (1978/79). The genealogy of critical branching processes. Stochastic Process. Appl. 8 101-116. · Zbl 0394.60082 · doi:10.1016/0304-4149(78)90071-6
[8] Fleischmann, K. and Siegmund-Schultze, R. (1977). The structure of reduced critical Galton-Watson processes. Math. Nachr. 79 233-241. · Zbl 0299.60065 · doi:10.1002/mana.19770790121
[9] Gernhard, T. (2008). The conditioned reconstructed process. J. Theoret. Biol. 253 769-778. · Zbl 1398.92171 · doi:10.1016/j.jtbi.2008.04.005
[10] Grosjean, N. and Huillet, T. (2018). On the genealogy and coalescence times of Bienaymé-Galton-Watson branching processes. Stoch. Models 34 1-24. · Zbl 1390.60311 · doi:10.1080/15326349.2017.1375958
[11] Harris, S. C., Hesse, M. and Kyprianou, A. E. (2016). Branching Brownian motion in a strip: Survival near criticality. Ann. Probab. 44 235-275. · Zbl 1342.60149 · doi:10.1214/14-AOP972
[12] Harris, S. C., Johnston, S. G. G. and Roberts, M. I. (2019). The coalescent structure of continuous-time Galton-Watson trees. Preprint. Available at arXiv:1703.00299v4.
[13] Harris, S. C. and Roberts, M. I. (2017). The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincaré Probab. Stat. 53 226-242. · Zbl 1361.60076 · doi:10.1214/15-AIHP714
[14] Johnston, S. G. G. (2019). The genealogy of Galton-Watson trees. Electron. J. Probab. 24 Art. ID 94. · Zbl 1467.60065 · doi:10.1214/19-EJP355
[15] Kolmogorov, A. N. (1938). On the solution of a biological problem. Proc. Tomsk Univ. 2 7-12.
[16] Lambert, A. (2003). Coalescence times for the branching process. Adv. in Appl. Probab. 35 1071-1089. · Zbl 1040.60073 · doi:10.1239/aap/1067436335
[17] Lambert, A. (2010). The contour of splitting trees is a Lévy process. Ann. Probab. 38 348-395. · Zbl 1190.60083 · doi:10.1214/09-AOP485
[18] Lambert, A. (2018). The coalescent of a sample from a binary branching process. Theor. Popul. Biol. 122 30-35. · Zbl 1405.92196 · doi:10.1016/j.tpb.2018.04.005
[19] Lambert, A. and Popovic, L. (2013). The coalescent point process of branching trees. Ann. Appl. Probab. 23 99-144. · Zbl 1268.60107 · doi:10.1214/11-AAP820
[20] Lambert, A. and Stadler, T. (2013). Birth-death models and coalescent point processes: The shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 90 113-128. · Zbl 1303.92082 · doi:10.1016/j.tpb.2013.10.002
[21] Le, V. (2014). Coalescence times for the Bienaymé-Galton-Watson process. J. Appl. Probab. 51 209-218. · Zbl 1291.60157 · doi:10.1239/jap/1395771424
[22] O’Connell, N. (1995). The genealogy of branching processes and the age of our most recent common ancestor. Adv. in Appl. Probab. 27 418-442. · Zbl 0837.60080 · doi:10.2307/1427834
[23] Popovic, L. (2004). Asymptotic genealogy of a critical branching process. Ann. Appl. Probab. 14 2120-2148. · Zbl 1062.92048 · doi:10.1214/105051604000000486
[24] Ren, Y.-X., Song, R. and Sun, Z. (2018). A 2-spine decomposition of the critical Galton-Watson tree and a probabilistic proof of Yaglom’s theorem. Electron. Commun. Probab. 23 Art. ID 42. · Zbl 1394.60089 · doi:10.1214/18-ECP143
[25] Ren, Y.-X., Song, R. and Sun, Z. (2019). Spine decompositions and limit theorems for a class of critical superprocesses. Acta Appl. Math. 165 91-131. · Zbl 1434.60250 · doi:10.1007/s10440-019-00243-7
[26] Rogers, L. C. G. (1989). A guided tour through excursions. Bull. Lond. Math. Soc. 21 305-341. · Zbl 0689.60075 · doi:10.1112/blms/21.4.305
[27] Schweinsberg, J. (2003). Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Process. Appl. 106 107-139. · Zbl 1075.60571 · doi:10.1016/S0304-4149(03)00028-0
[28] Yaglom, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.