×

Coalescence times for the Bienaymé-Galton-Watson process. (English) Zbl 1291.60157

Summary: We investigate the distribution of the coalescence time (most recent common ancestor) for two individuals picked at random (uniformly) in the current generation of a continuous-time Bienaymé-Galton-Watson process founded \(t\) units of time ago. We also obtain limiting distributions as \(t\to \infty\) in the subcritical case. We extend our results for two individuals to the joint distribution of coalescence times for any finite number of individuals sampled in the current generation.

MSC:

60J27 Continuous-time Markov processes on discrete state spaces
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)

References:

[1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York. · Zbl 0259.60002
[2] Cattiaux, P. et al. (2009). Quasi-stationary distributions and diffusion models in population dynamics. Ann. Prob. 37, 1926-1969. · Zbl 1176.92041 · doi:10.1214/09-AOP451
[3] Cheong, C. K. (1970). Quasi-stationary distributions in semi-Markov processes. J. Appl. Prob. 7, 388-399, 788. · Zbl 0206.48502 · doi:10.2307/3211972
[4] Cheong, C. K. (1972). Quasi-stationary distributions for the continuous-time Galton-Watson process. Bull. Soc. Math. Belg. 24, 343-350. · Zbl 0272.60054
[5] Jagers, P., Klebaner, F. and Sagitov, S. (2007). Markovian paths to extinction. Adv. Appl. Prob. 39, 569-587. · Zbl 1134.60052 · doi:10.1239/aap/1183667624
[6] Joffe, A. (1967). On the Galton-Watson branching processes with mean less than one. Ann. Math. Statist. 38, 264-266. · Zbl 0153.20602 · doi:10.1214/aoms/1177699079
[7] Lambert, A. (2003). Coalescence times for the branching process. Adv. Appl. Prob. 35, 1071-1089. · Zbl 1040.60073 · doi:10.1239/aap/1067436335
[8] Lambert, A. (2007). Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Prob. 12, 420-446. · Zbl 1127.60082 · doi:10.1214/EJP.v12-402
[9] Lambert, A. (2009). The allelic partition for coalescent point processes. Markov Process. Relat. Fields 15, 359-386. · Zbl 1177.92026
[10] Lambert, A. and Popovic, L. (2013). The coalescent point process of branching trees. Ann. Appl. Prob. 23, 99-144. · Zbl 1268.60107 · doi:10.1214/11-AAP820
[11] Méléard, S. and Villemonais, D. (2012). Quasi-stationary distributions for population processes. Prob. Surveys 9, 340-410. · Zbl 1261.92056 · doi:10.1214/11-PS191
[12] Pardoux, E. (2014). Probabilistic Models of Population Genetics . In preparation.
[13] Pfaffelhuber, P. and Wakolbinger, A. (2006). The process of most recent common ancestors in an evolving coalescent. Stoch. Process. Appl. 116, 1836-1859. · Zbl 1110.92030 · doi:10.1016/j.spa.2006.04.015
[14] Pfaffelhuber, P., Wakolbinger, A. and Weisshaupt, H. (2011). The tree length of an evolving coalescent. Prob. Theory Relat. Fields 151, 529-557. · Zbl 1235.60142 · doi:10.1007/s00440-010-0307-6
[15] Vere-Jones, D. (1969). Some limit theorems for evanescent processes. Austral. J. Statist. 11, 67-78. · Zbl 0188.23302 · doi:10.1111/j.1467-842X.1969.tb00300.x
[16] Zolotarev, V. M. (1957). More exact statements of several theorems in the theory of branching processes. Theory Prob. Appl. 2, 245-253. · Zbl 0089.34202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.