×

All secant varieties of the Chow variety are nondefective for cubics and quaternary forms. (English) Zbl 1472.14008

Let \(f\in S^d \mathbb C^{n+1}\) be a homogeneous polynomial of degree \(d\) in \(n+1\) variables. The Chow rank of \(f\) is the minimal integer \(s\) such that \(f\) may be written as \[ f = \ell_{1,1}\cdots \ell_{1,d} + \cdots + \ell_{s,1}\cdots \ell_{s,d}, \] where the \(\ell_{i,j}\) are linear forms. This is an important instance of an additive decomposition for a tensor. Tensor decompositions are by now a large field with deep geometric and algebraic roots and yet possess a vast number of applications in many contexts such as complexity, information theory, and machine learning among others.
One geometric feature of the subject arises when one asks what is the Chow rank of a generic \(f\in S^d \mathbb C^{n+1}\). Let \(\mathcal{C}_{d,n}\subset \mathbb P^{\binom{n+d}{d}-1}\) be the projective variety parameterizing products of linear forms in \(S^d \mathbb C^{n+1}\). The variety \(\mathcal{C}_{d,n}\) is called the Chow variety. Computing the Chow rank of a generic \(f\in S^d \mathbb C^{n+1}\) is equivalent to finding the smallest \(s\) such that \(\sigma_s(\mathcal{C}_{d,n}) = \mathbb P^{\binom{n+d}{d}-1}\), where \(\sigma_s(\mathcal{C}_{d,n})\) is the \(s\)-th secant variety of the Chow variety. The topic of secant varieties is a delightful chapter of classical algebraic geometry that has attracted more attention in the last decades, partly because of its natural role in additive decompositions and applications thereof.
This nice paper is a contribution to determining dimensions of secants of Chow varieties. The main result is that all secant varieties \(\sigma_s(\mathcal{C}_{d,n})\) have expected dimensions for:
any \(n\) and \(d=3\),
\(n=3\) and any \(d\).

The methods are very combinatorial and rely on a lattice construction generalising a method due to Brambilla and Ottaviani. The base cases of the inductions are treated with a computer-assisted proof.

MSC:

14C20 Divisors, linear systems, invertible sheaves
14N05 Projective techniques in algebraic geometry
14Q15 Computational aspects of higher-dimensional varieties
14Q20 Effectivity, complexity and computational aspects of algebraic geometry
15A69 Multilinear algebra, tensor calculus
15A72 Vector and tensor algebra, theory of invariants

References:

[1] Abo, Hirotachi, Varieties of completely decomposable forms and their secants, J. Algebra, 403, 135-153 (2014) · Zbl 1309.14039 · doi:10.1016/j.jalgebra.2013.12.027
[2] Abo, Hirotachi; Ottaviani, Giorgio; Peterson, Chris, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 361, 2, 767-792 (2009) · Zbl 1170.14036 · doi:10.1090/S0002-9947-08-04725-9
[3] Abo, Hirotachi; Vannieuwenhoven, Nick, Most secant varieties of tangential varieties to Veronese varieties are nondefective, Trans. Amer. Math. Soc., 370, 1, 393-420 (2018) · Zbl 1387.14136 · doi:10.1090/tran/6955
[4] Alexander, J.; Hirschowitz, A., Polynomial interpolation in several variables, J. Algebraic Geom., 4, 2, 201-222 (1995) · Zbl 0829.14002
[5] Arrondo, Enrique; Bernardi, Alessandra, On the variety parameterizing completely decomposable polynomials, J. Pure Appl. Algebra, 215, 3, 201-220 (2011) · Zbl 1211.14058 · doi:10.1016/j.jpaa.2010.04.008
[6] BCCGO A. Bernardi, E. Carlini, M. Catalisano, A. Gimigliano, and A. Oneto, The hitchhiker guide to: Secant varieties and tensor decomposition, Mathematics, 6(314):1-86, 2018. · Zbl 1425.14043
[7] Bernardi, A.; Catalisano, M. V.; Gimigliano, A.; Id\`a, M., Secant varieties to osculating varieties of Veronese embeddings of \(\mathbb{P}^n\), J. Algebra, 321, 3, 982-1004 (2009) · Zbl 1226.14065 · doi:10.1016/j.jalgebra.2008.10.020
[8] Bini, Dario; Pan, Victor Y., Polynomial and matrix computations. Vol. 1, Progress in Theoretical Computer Science, xvi+415 pp. (1994), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0809.65012 · doi:10.1007/978-1-4612-0265-3
[9] Bocci, Cristiano; Chiantini, Luca; Ottaviani, Giorgio, Refined methods for the identifiability of tensors, Ann. Mat. Pura Appl. (4), 193, 6, 1691-1702 (2014) · Zbl 1314.14102 · doi:10.1007/s10231-013-0352-8
[10] Brambilla, Maria Chiara; Ottaviani, Giorgio, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra, 212, 5, 1229-1251 (2008) · Zbl 1139.14007 · doi:10.1016/j.jpaa.2007.09.014
[11] Campbell, J. E., Notes on determinants, Proc. Lond. Math. Soc., 24, 67-79 (1892/93) · JFM 25.0222.03 · doi:10.1112/plms/s1-24.1.67
[12] CKY1989 J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of nonlinear polynomial equations faster. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC ’89, pages 121-128, New York, NY, USA, 1989. ACM.
[13] Carlini, Enrico; Chiantini, Luca; Geramita, Anthony V., Complete intersections on general hypersurfaces, Michigan Math. J., 57, 121-136 (2008) · Zbl 1181.14057 · doi:10.1307/mmj/1220879400
[14] Carlini, Enrico; Chiantini, Luca; Geramita, Anthony V., Complete intersection points on general surfaces in \(\mathbb{P}^3\), Michigan Math. J., 59, 2, 269-281 (2010) · Zbl 1223.14060 · doi:10.1307/mmj/1281531455
[15] Catalisano, Maria Virginia; Chiantini, Luca; Geramita, Anthony V.; Oneto, Alessandro, Waring-like decompositions of polynomials, 1, Linear Algebra Appl., 533, 311-325 (2017) · Zbl 1372.14047 · doi:10.1016/j.laa.2017.07.021
[16] Catalisano, M. V.; Geramita, A. V.; Gimigliano, A., On the secant varieties to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc., 130, 4, 975-985 (2002) · Zbl 0990.14021 · doi:10.1090/S0002-9939-01-06251-7
[17] Catalisano, M. V.; Geramita, A. V.; Gimigliano, A.; Harbourne, B.; Migliore, J.; Nagel, U.; Shin, Y. S., Secant varieties of the varieties of reducible hypersurfaces in \(\mathbb{P}^n\), J. Algebra, 528, 381-438 (2019) · Zbl 0597.65031 · doi:10.1016/j.jalgebra.2019.03.014
[18] Chiantini, Luca; Ottaviani, Giorgio, On generic identifiability of 3-tensors of small rank, SIAM J. Matrix Anal. Appl., 33, 3, 1018-1037 (2012) · Zbl 1263.14053 · doi:10.1137/110829180
[19] Chiantini, Luca; Ottaviani, Giorgio; Vannieuwenhoven, Nick, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl., 35, 4, 1265-1287 (2014) · Zbl 1322.14022 · doi:10.1137/140961389
[20] Comon, Pierre; Golub, Gene; Lim, Lek-Heng; Mourrain, Bernard, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., 30, 3, 1254-1279 (2008) · Zbl 1181.15014 · doi:10.1137/060661569
[21] Dumas, Jean-Guillaume; Giorgi, Pascal; Pernet, Cl\'{e}ment, Dense linear algebra over word-size prime fields: the FFLAS and FFPACK packages, ACM Trans. Math. Software, 35, 3, Art. 19, 35 pp. (2008) · doi:10.1145/1391989.1391992
[22] M2 D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[23] Eigen G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.
[24] Hilbert, David, Beweis f\"{u}r die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl \(n^{ter}\) Potenzen (Waringsches Problem), Math. Ann., 67, 3, 281-300 (1909) · JFM 40.0236.03 · doi:10.1007/BF01450405
[25] Iarrobino, A., Inverse system of a symbolic power. II. The Waring problem for forms, J. Algebra, 174, 3, 1091-1110 (1995) · Zbl 0842.11016 · doi:10.1006/jabr.1995.1169
[26] Kolda, Tamara G.; Bader, Brett W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500 (2009) · Zbl 1173.65029 · doi:10.1137/07070111X
[27] Landsberg, J. M., Tensors: geometry and applications, Graduate Studies in Mathematics 128, xx+439 pp. (2012), American Mathematical Society, Providence, RI · Zbl 1238.15013 · doi:10.1090/gsm/128
[28] Moenck1976 R. T. Moenck. Practical fast polynomial multiplication. In Proceedings of the third ACM symposium on symbolic and algebraic computation, SYMSAC ’76, pp. 136-148, New York, NY, USA, 1976. ACM. · Zbl 0453.68013
[29] Pan, Victor Y., Simple multivariate polynomial multiplication, J. Symbolic Comput., 18, 3, 183-186 (1994) · Zbl 0831.12004 · doi:10.1006/jsco.1994.1042
[30] Polishchuk, Alexander; Positselski, Leonid, Quadratic algebras, University Lecture Series 37, xii+159 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1145.16009 · doi:10.1090/ulect/037
[31] OpenBLAS W. Qian, Z. Xianyi, Z. Yunquan, and Q. Yi. AUGEM: Automatically generate high performance dense linear algebra kernels on x86 CPUs. In Proceedings of the international conference on high performance computing, networking, storage and analysis, pp. 25:1-25:12, New York, NY, 2013.
[32] shin2 Y. S. Shin. Some applications of the union of star-configurations in \(P^n\), J. Chungcheong Math. Soc, 24:807-824, 2011.
[33] Shin, Yong Su, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl., 11, 6, 1250109, 27 pp. (2012) · Zbl 1263.13013 · doi:10.1142/S0219498812501095
[34] Stanley, Richard P., Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics 49, xiv+626 pp. (2012), Cambridge University Press, Cambridge · Zbl 1247.05003
[35] Terracini1911 A. Terracini. Sulle vk per cui la variet\`a degli sh (h + 1) seganti ha dimensione minore dell’ordinario, Rendiconti del Circolo Matematico di Palermo (1884-1940), 31(1):392-396, 1911. · JFM 42.0673.02
[36] Torrance, Douglas A., Nondefective secant varieties of completely decomposable forms, 87 pp. (2013), ProQuest LLC, Ann Arbor, MI
[37] Torrance, Douglas A., Generic forms of low Chow rank, J. Algebra Appl., 16, 3, 1750047, 10 pp. (2017) · Zbl 1369.14068 · doi:10.1142/S0219498817500475
[38] Wan, Jia, On Waring’s Problem for Systems of Skew-Symmetric Forms, 65 pp. (2013), ProQuest LLC, Ann Arbor, MI · Zbl 1310.14042
[39] Waring, Edward, Meditationes algebraic\ae, lx+459 pp. (1991), American Mathematical Society, Providence, RI
[40] Woods, Kevin, The unreasonable ubiquitousness of quasi-polynomials, Electron. J. Combin., 21, 1, Paper 1.44, 23 pp. (2014) · Zbl 1300.05031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.