×

Generic forms of low Chow rank. (English) Zbl 1369.14068

The Chow rank of a homogeneous polynomial \(f\) of degree \(d\) is the minimum \(s\) such that \(f\) can be represented as a sum of \(s\) products of \(d\) linear forms, i.e., \[ f=l_{1,1}\cdot \ldots \cdot l_{1,d}+\ldots + l_{s,1}\cdot \ldots \cdot l_{s,d}, \] where the \(l_{i,j}\) are linear forms.
Thus, the Chow rank of a generic form of degree \(d\) is equal to the smallest \(s\) such that \(\sigma_s(\mathrm{Split}_d(\mathbb P^n))\), the secant variety of the Chow variety fills the ambient space.
The expected dimension of \(\sigma_s(\mathrm{Split}_d(\mathbb P^n))\) is \[ \mathrm{expdim} \sigma_s(\mathrm{Split}_d(\mathbb P^n))=\min \{s(dn+1),\binom{n+d}{d}\}-1. \]
If \(\dim \sigma_s(\mathrm{Split}_d(\mathbb P^n))= \mathrm{expdim} \sigma_s(\mathrm{Split}_d(\mathbb P^n))\) then \(\sigma_s(\mathrm{Split}_d(\mathbb P^n))\) is nondefective.
In [J. Pure Appl. Algebra 215, No. 3, 201–220 (2011; Zbl 1211.14058)] E. Arrondo and A. Bernardi formulated the conjecture that the secant variety \(\sigma_s(\mathrm{Split}_d(\mathbb P^n))\) is nondefective unless \(d=2\) and \(2\leq s \leq \frac n2\).
The author shows [Theorem 1.4] that this conjecture is true for \(s\leq 35\). Moreover he gives an elementary argument [Theorem 2.4] showing that for \(d=2\) and all \(s\) and \(n\) subject to the condition \(2\leq s\leq \frac n2\), the smallest variety \(\sigma_s(\mathrm{Split}_2(\mathbb P^n))\) is defective.

MSC:

14N05 Projective techniques in algebraic geometry

Citations:

Zbl 1211.14058

Software:

Macaulay2

References:

[1] Abo, H., Varieties of completely decomposable forms and their secants, J. Algebra403 (2014) 135-153. · Zbl 1309.14039
[2] Abo, H., Ottaviani, G. and Peterson, C., Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc.361(2) (2009) 767-792. · Zbl 1170.14036
[3] Alexander, J. and Hirschowitz, A., Polynomial interpolation in several variables, J. Algebraic Geom.4(2) (1995) 201-222. · Zbl 0829.14002
[4] Arrondo, E. and Bernardi, A., On the variety parameterizing completely decomposable polynomials, J. Pure Appl. Algebra215(3) (2011) 201-220. · Zbl 1211.14058
[5] Carlini, E., Chiantini, L. and Geramita, A. V., Complete intersections on general hypersurfaces, Michigan Math. J.57 (2008) 121-136. · Zbl 1181.14057
[6] Carlini, E., Chiantini, L. and Geramita, A. V., Complete intersection points on general surfaces in \(\Bbb P^3\), Michigan Math. J.59(2) (2010) 269-281. · Zbl 1223.14060
[7] M. Catalisano, A. Geramita, A. Gimigliano, B. Harbourne, J. Migliore, U. Nagel and Y. Shin, Secant varieties of the varieties of reducible hypersurfaces in \(\Bbb P^n\), preprint (2015), arXiv:1502.00167. · Zbl 1422.14057
[8] Catalisano, M., Geramita, A., Gimigliano, A. and Shin, Y.-S., The secant line variety to the varieties of reducible plane curves, Ann. Mate. Pura ed Appl. (1923 -), (2014) 1-21. https://link.springer.com/journal/10231/onlineFirst/page/5.
[9] D. R. Grayson and M. E. Stillman, Macaulay2: A software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
[10] Landsberg, J. M., Tensors: Geometry and Applications, , Vol. 128 (American Mathematical Society, Providence, RI, 2012). · Zbl 1238.15013
[11] Landsberg, J. M., Geometric complexity theory: An introduction for geometers, Ann. Univ. Ferrara Sez. VII Sci. Mat.61(1) (2015) 65-117. · Zbl 1329.68128
[12] Shin, Y. S., Some applications of the union of star-configurations in \(\Bbb P^n\), J. Chungcheong Math. Soc.24 (2011) 807-824.
[13] Shin, Y. S., Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl.11(06) (2012) 1250109. · Zbl 1263.13013
[14] Terracini, A., Sulle \(V_k\) per cui la varietà degli \(S_h(h + 1)\)-seganti ha dimensione minore dell’ordinario, Rend. Circ. Mat. Palermo31 (1911) 392-396. · JFM 42.0673.02
[15] D. A. Torrance, Nondefective Secant Varieties of Completely Decomposable forms. (ProQuest LLC, Ann Arbor, MI, 2013); Ph.D. thesis, University of Idaho. · Zbl 1472.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.