×

A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation. (English) Zbl 1471.35332

Summary: The primary objective of this work is to study the inverse problem of identifying a stochastic parameter in partial differential equations with random data. In the framework of stochastic Sobolev spaces, we prove the Lipschitz continuity and the differentiability of the parameter-to-solution map and provide a new derivative characterization. We introduce a new energy-norm based modified output least-squares (OLS) objective functional and prove its smoothness and convexity. For stable inversion, we develop a regularization framework and prove an existence result for the regularized stochastic optimization problem. We also consider the OLS based stochastic optimization problem and provide an adjoint approach to compute the derivative of the OLS-functional. In the finite-dimensional noise setting, we give a parameterization of the inverse problem. We develop a computational framework by using the stochastic Galerkin discretization scheme and derive explicit discrete formulas for the considered objective functionals and their gradient. We provide detailed computational results to illustrate the feasibility and efficacy of the developed inversion framework. Encouraging numerical results demonstrate some of the advantages of the new framework over the existing approaches.

MSC:

35R30 Inverse problems for PDEs
35R60 PDEs with randomness, stochastic partial differential equations
49N45 Inverse problems in optimal control
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J22 Numerical solution to inverse problems in abstract spaces
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] R. Aboulaich, N. Fikal, E. El Guarmah, and N. Zemzemi, Stochastic finite element method for torso conductivity uncertainties quantification in electrocardiography inverse problem, Math. Model. Nat. Phenom., 11 (2016), pp. 1-19. · Zbl 1458.65142
[2] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1166-1192. · Zbl 1391.93289
[3] M. Anitescu, Spectral finite-element methods for parametric constrained optimization problems, SIAM J. Numer. Anal., 47 (2009), pp. 1739-1759. · Zbl 1193.65095
[4] I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800-825. · Zbl 1080.65003
[5] V. A. Badri Narayanan and N. Zabaras, Stochastic inverse heat conduction using a spectral approach, Internat. J. Numer. Methods Engrg., 60 (2004), pp. 1569-1593. · Zbl 1098.80008
[6] A. T. Bharucha-Reid, Random Integral Equations, Math. Sci. Eng. 96, Academic Press, New York, 1972. · Zbl 0327.60040
[7] J. Borggaard and H.-W. van Wyk, Gradient-based estimation of uncertain parameters for elliptic partial differential equations, Inverse Problems, 31 (2015), 065008. · Zbl 1321.35028
[8] A. Borzi, Multigrid and sparse-grid schemes for elliptic control problems with random coefficients, Comput. Vis. Sci., 13 (2010), pp. 153-160. · Zbl 1213.65092
[9] J. Breidt, T. Butler, and D. Estep, A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis, SIAM J. Numer. Anal., 49 (2011), pp. 1836-1859. · Zbl 1234.60062
[10] P. Chen, A. Quarteroni, and G. Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 133 (2016), pp. 67-102. · Zbl 1344.93109
[11] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty, J. Comput. Phys., 385 (2019), pp. 163-186. · Zbl 1451.65076
[12] E. Crossen, M. S. Gockenbach, B. Jadamba, A. A. Khan, and B. Winkler, An equation error approach for the elasticity imaging inverse problem for predicting tumor location, Comput. Math. Appl., 67 (2014), pp. 122-135. · Zbl 1352.92087
[13] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, On the convergence of generalized polynomial chaos expansions, ESAIM Math. Model. Numer. Anal., 46 (2012), pp. 317-339. · Zbl 1273.65012
[14] O. G. Ernst, B. Sprungk, and H.-J. Starkloff, Bayesian inverse problems and Kalman filters, in Extraction of Quantifiable Information from Complex Systems, Lect. Notes Comput. Sci. Eng. 102, Springer, New York, 2014, pp. 133-159. · Zbl 1328.93260
[15] O. G. Ernst, B. Sprungk, and H.-J. Starkloff, Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 823-851. · Zbl 1339.60041
[16] S. Esmaili and M. R. Eslahchi, Application of fixed point-collocation method for solving an optimal control problem of a parabolic-hyperbolic free boundary problem modeling the growth of tumor with drug application, Comput. Math. Appl., 75 (2018), pp. 2193-2216. · Zbl 1409.49027
[17] C. Geiersbach and G. C. Pflug, Projected stochastic gradients for convex constrained problems in Hilbert spaces, SIAM J. Optim., 29 (2019), pp. 2079-2099. · Zbl 1426.62238
[18] M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems: Part \(1\). An output least-squares approach, Math. Mech. Solids, 12 (2007), pp. 259-276. · Zbl 1153.74021
[19] M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems. II. An augmented Lagrangian approach, Math. Mech. Solids, 14 (2009), pp. 517-539. · Zbl 1197.74048
[20] J. Gwinner, B. Jadamba, A. A. Khan, and M. Sama, Identification in variational and quasi-variational inequalities, J. Convex Anal., 25 (2018), pp. 545-569. · Zbl 1391.49012
[21] R. Hawks, B. Jadamba, A. A. Khan, M. Sama, and Y. Yang, A variational inequality based stochastic approximation for inverse problems in stochastic partial differential equations, in Nonlinear Analysis and Global Optimization, Springer, New York, 2021, pp. 207-226. · Zbl 1472.35451
[22] M. Heinkenschloss, B. Kramer, and T. Takhtaganov, Adaptive reduced-order model construction for conditional value-at-risk estimation, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 668-692. · Zbl 1443.62152
[23] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, AMS, Providence, RI, 1974. · Zbl 0392.46001
[24] B. Jadamba, A. A. Khan, G. Rus, M. Sama, and B. Winkler, A new convex inversion framework for parameter identification in saddle point problems with an application to the elasticity imaging inverse problem of predicting tumor location, SIAM J. Appl. Math., 74 (2014), pp. 1486-1510. · Zbl 1330.35533
[25] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Appl. Math. Sci. 160, Springer, New York, 2005. · Zbl 1068.65022
[26] M. Keyanpour and A. M. Nehrani, Optimal thickness of a cylindrical shell subject to stochastic forces, J. Optim. Theory Appl., 167 (2015), pp. 1032-1050. · Zbl 1332.74043
[27] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847-A1879. · Zbl 1275.49047
[28] H.-C. Lee and M. D. Gunzburger, Comparison of approaches for random PDE optimization problems based on different matching functionals, Comput. Math. Appl., 73 (2017), pp. 1657-1672. · Zbl 1370.49032
[29] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge Texts in Appl. Math. 50, Cambridge University Press, New York, 2014. · Zbl 1327.60011
[30] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM J. Sci. Comput., 34 (2012), pp. A1460-A1487. · Zbl 1250.65011
[31] L. Mathelin, C. Desceliers, and M. Y. Hussaini, Stochastic data assimilation of the random shallow water model loads with uncertain experimental measurements, Comput. Mech., 47 (2011), pp. 603-616. · Zbl 1398.76188
[32] M. Morzfeld, X. Tu, J. Wilkening, and A. J. Chorin, Parameter estimation by implicit sampling, Commun. Appl. Math. Comput. Sci., 10 (2015), pp. 205-225. · Zbl 1328.86002
[33] A. Mugler and H.-J. Starkloff, On elliptic partial differential equations with random coefficients, Stud. Univ. Babeş-Bolyai Math., 56 (2011), pp. 473-487. · Zbl 1536.35390
[34] A. Mugler and H.-J. Starkloff, On the convergence of the stochastic Galerkin method for random elliptic partial differential equations, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1237-1263. · Zbl 1297.65010
[35] R. Naseri and A. Malek, Numerical optimal control for problems with random forced SPDE constraints, ISRN Appl. Math., 2014 (2014), 974305. · Zbl 1298.65153
[36] M. Z. Nashed and H. W. Engl, Random generalized inverses and approximate solutions of random operator equations, in Approximate Solution of Random Equations, North-Holland, Amsterdam, 1979, pp. 149-210. · Zbl 0427.60072
[37] P. Ngnepieba and M. Y. Hussaini, An efficient sampling method for stochastic inverse problems, Comput. Optim. Appl., 37 (2007), pp. 121-138. · Zbl 1140.93044
[38] A. Nouy and C. Soize, Random field representations for stochastic elliptic boundary value problems and statistical inverse problems, European J. Appl. Math., 25 (2014), pp. 339-373. · Zbl 1298.60056
[39] S. D. R. Blaheta, M. Beres, and D. Horak, Bayesian inversion for steady flow in fractured porous media with contact on fractures and hydro-mechanical coupling, Comput. Geosci., 24 (2020), pp. 1911-1932. · Zbl 1452.76230
[40] B. V. Rosić and H. G. Matthies, Identification of properties of stochastic elastoplastic systems, in Computational Methods in Stochastic Dynamics. Volume 2, Comput. Methods Appl. Sci. 26, Springer, New York, 2013, pp. 237-253. · Zbl 1304.93076
[41] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain controls, Comput. Methods Appl. Mech. Engrg., 213 (2012), pp. 152-167. · Zbl 1243.49034
[42] K. Sepahvand and S. Marburg, On construction of uncertain material parameter using generalized polynomial chaos expansion from experimental data, Procedia IUTAM, 6 (2013), pp. 4-17.
[43] R. E. Tanase, Parameter Estimation for Partial Differential Equations Using Stochastic Methods, Ph.D. thesis, University of Pittsburgh, 2016.
[44] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints, SIAM J. Control Optim., 50 (2012), pp. 2659-2682. · Zbl 1260.60125
[45] H.-W. Van Wyk, A Variational Approach to Estimating Uncertain Parameters in Elliptic Systems, Ph.D. thesis, Virginia Tech, 2012.
[46] J. E. Warner, W. Aquino, and M. D. Grigoriu, Stochastic reduced order models for inverse problems under uncertainty, Comput. Methods Appl. Mech. Engrg., 285 (2015), pp. 488-514. · Zbl 1425.65068
[47] N. Zabaras, Solving stochastic inverse problems: A sparse grid collocation approach, in Large-scale Inverse Problems and Quantification of Uncertainty, Wiley Ser. Comput. Stat., Wiley, Chichester, 2011, pp. 291-319.
[48] N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, J. Comput. Phys., 227 (2008), pp. 4697-4735. · Zbl 1142.65008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.