×

Optimal thickness of a cylindrical shell subject to stochastic forces. (English) Zbl 1332.74043

Summary: In this paper, sizing of the thickness of a cylindrical shell subject to a stochastic force is considered. The variational principle of stochastic partial differential equations (PDEs) is applied to derive the necessary optimality conditions. The goal is to determine the optimal thickness of a cylindrical shell such that subject to a stochastic force it does not deform, although, because of the elasticity of a cylindrical shell, occasionally small deformations that do not destroy the structure are allowable. The sizing problem under a stochastic force is considered via a one-dimensional stochastic PDE-constrained optimization problem. Test examples are solved using a self-adjoint gradient algorithm.

MSC:

74P10 Optimization of other properties in solid mechanics
74K25 Shells
65K10 Numerical optimization and variational techniques
65K15 Numerical methods for variational inequalities and related problems
49M05 Numerical methods based on necessary conditions
49K45 Optimality conditions for problems involving randomness
49K20 Optimality conditions for problems involving partial differential equations
Full Text: DOI

References:

[1] Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, New York (1984) · Zbl 0534.49001 · doi:10.1007/978-3-642-87722-3
[2] Allaire, G.: Conception Optimale de Structures. Springer, Berlin (2007) · Zbl 1132.49033
[3] Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2010) · Zbl 1179.65002
[4] Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, Berlin (1992) · Zbl 0761.73003 · doi:10.1007/978-3-642-58106-9
[5] Delfour, M.C., Zolesio, J.P.: Shapes and Geometries: Analysis, Differential Calculus and Optimization. SIAM, Philadelphia (2011) · Zbl 1251.49001 · doi:10.1137/1.9780898719826
[6] Ciarlet, P.G.: Introduction to Linear Shell Theory. North-Holland, Amsterdam (1998) · Zbl 0912.73001
[7] Kouri, D. P.: An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients. PhD thesis, Rice University, Houston (2012) · Zbl 1227.74043
[8] Repalle, J.: Robust shape design techniques for steady state metal forming processes. PhD thesis, Wright State University, Ohio (2006)
[9] Zhang, Y.: Efficient uncertainty quantification in aerospace analysis and design. PhD thesis, Missouri university of science and technology, Missouri (2013) · Zbl 1238.49058
[10] Rosseel, E., Wells, G.N.: Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Eng. 213, 152-167 (2012) · Zbl 1243.49034 · doi:10.1016/j.cma.2011.11.026
[11] Tiesler, H., Kirby, R.M., Xiu, D., Preusser, T.: Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50(5), 2659-2682 (2012) · Zbl 1260.60125 · doi:10.1137/110835438
[12] Bletzinger, K.U., Firl, M., Linhard, J., Wüchner, R.: Optimal shapes of mechanically motivated surfaces. Comput. Methods Appl. Mech. Eng. 199(5), 324-333 (2010) · Zbl 1227.74043 · doi:10.1016/j.cma.2008.09.009
[13] Zang, C., Friswell, M.I., Mottershead, J.E.: A review of robust optimal design and its application in dynamics. Comput. Struct. 83(4), 315-326 (2005) · doi:10.1016/j.compstruc.2004.10.007
[14] Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM Math. Model. Numer. Anal. 47, 1107-1131 (2013) · Zbl 1402.92246 · doi:10.1051/m2an/2012059
[15] Dunning, P.D., Kim, H.A., Mullineux, G.: Introducing loading uncertainty in topology optimization. Am. Inst. Aeronaut. Astronaut. 49(4), 760-768 (2011) · doi:10.2514/1.J050670
[16] Nestler, P., Schmidt, W.H.: Optimal design of cylindrical shells. Discuss. Math. Differ. Incl. Control Optim. 30, 253-267 (2010) · Zbl 1238.49058 · doi:10.7151/dmdico.1123
[17] Nestler, P. : Optimales Design einer Zylinderschale - eine Problemstellung der optimalen Steuerung in der Linearen Elastizitätstheorie. PhD thesis, University of Greifswald, Greifswald (2009)
[18] Keyanpour, M., Farahi, M.H.: Wing drag minimization. Appl. Math. Comput. 186(1), 685-692 (2007) · Zbl 1115.65073 · doi:10.1016/j.amc.2006.08.014
[19] Neittaanmäki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems: Theory and Applications. Springer, New York (2006) · Zbl 1106.49002
[20] Sprekels, J., Tiba, D.: Optimization Problems for Thin Elastic Structures, pp. 255-273. Birkhäuser, Basel (2009) · Zbl 1197.49047
[21] Oberkampf, W.L., Helton, J.C., Joslyn, C.A., Wojtkiewicz, S.F., Ferson, S.: Challenge problems: uncertainty in system response given uncertain parameters. Reliab. Eng. Syst. Safe. 85(1), 11-19 (2004) · doi:10.1016/j.ress.2004.03.002
[22] Swiler, L. P., Thomas, L. P., Randall, L. M.: Epistemic uncertainty quantification tutorial. In Proceedings of the 27th International Modal Analysis Conference, Orlando, United States (2009) · Zbl 1115.65073
[23] Emmrich, E.: Gewöhnliche und Operator-Differentialgleichungen: Eine integrierte Einführung in Randwertprobleme und Evolutionsgleichungen für Studierende. Vieweg teubner, Berlin (2004) · Zbl 1077.34002 · doi:10.1007/978-3-322-80240-8
[24] Hinze, M., Rene, P., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. Springer. Series Math. Model. 23 (2009) · Zbl 1167.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.