×

On the geometry of slow-fast phase spaces and the semiclassical quantization. (English) Zbl 1470.53073

The paper under review concerns applications of the torus quantization results to a class of pseudodifferential operators depending on two small parameters. More precisely, the adiabatic-type sitution is studied, when the phase space splits into slow and fast parts and typically arises under some special relations between the given parameters \(h_1\ll h_2\ll 1\). The considered relationship between the parameters is \(h_2=\hbar \), \(h_1=\varepsilon \hbar\) where \(\hbar \ll 1\) and \(\varepsilon \ll 1\) play the role of the semiclassical and classical adiabatic parameter respectively.

MSC:

53D50 Geometric quantization
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
Full Text: DOI

References:

[1] Arnold, V. I.; Kozlov, V. V.; Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Encyclopedia of Math. Sci., vol.3 (Dynamical Systems III) (1988), Berlin-New York: Springer-Verlag, Berlin-New York
[2] Camacho, M. Avendaño; M.; Vorobiev, Y. M., Homological Equations for Tensor Fields and Periodic Averaging, Russ. J. Math. Phys., 18, 3, 243-257 (2011) · Zbl 1262.37027 · doi:10.1134/S1061920811030010
[3] Avendaño-Camacho, M.; Vallejo, J. A.; Vorobiev, Yu., Higher Order Corrections to Adiabatic Invariants of Generalized Slow-Fast Hamiltonian Systems, J. of Math. Phys., 54, 1-15 (2013) · Zbl 1302.37032 · doi:10.1063/1.4817863
[4] Avendaño-Camacho, M.; Vorobiev, Yu., Deformations of Poisson Structures on Fibered Manifolds and Adiabatic Slow-Fast Systems, Int. J. Geom. Methods Mod. Phys., 14, 6, 0 (2017) · Zbl 1379.53097 · doi:10.1142/S0219887817500864
[5] Berry, M. V.; Hannay, J. H., Classical Nonadiabatic Angles, J. Phys. A, 21, 325-331 (1988) · Zbl 0646.70010 · doi:10.1088/0305-4470/21/6/002
[6] Cushman, R., “Normal Form for Hamiltonian Vector Fields with Periodic Flow,” in, 125-144 (1984), Dordrecht-Boston: Reidel, Dordrecht-Boston · Zbl 0549.58020
[7] Cushman, R. H.; Bates, L. M., Global Aspects of Classical Integrable Systems (1997), Berlin: Birkhäuser Verlag, Berlin · Zbl 0882.58023 · doi:10.1007/978-3-0348-8891-2
[8] Chruscinski, D.; Jamiolkowski, A., “Geometric Phases in Classical and Quantum Mechanics,” Progress in Mathematical Physics (2004), Basel: Birkhäuser, Basel · Zbl 1075.81002
[9] Dobrokhotov, S. Yu.; Nazaikinskii, V. E.; Shafarevich, A. I., New Integral Representations of the Maslov Canonical Operator in Singular Charts, Izvestiya: Mathematics, 81, 2, 95-122 (2017) · Zbl 1369.81033
[10] Golin, S.; Knauf, A.; Marmi, S., The Hannay Angles: Geometry, Adiabaticity, and an Example, Commun. Math. Phys., 123, 95-122 (1989) · Zbl 0825.58012 · doi:10.1007/BF01244019
[11] Gordon, W., On the Relation Between Period and Energy in Periodic Dynamical Systems, J. Math. Mech., 19, 111-114 (1969) · Zbl 0179.42004
[12] Hannay, J. H., Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian, J. Phys. A: Math. Gen., 18, 221-230 (1985) · doi:10.1088/0305-4470/18/2/011
[13] Littlejohn, R. G.; Flynn, W. G., Geometric Phases and the Bohr-Sommerfeld Quantization of Multicomponent Wave Fields, Phys. Rev. Lett., 66, 22, 2839-2842 (1991) · Zbl 0968.81517 · doi:10.1103/PhysRevLett.66.2839
[14] Karasev, M. V., New Global Asymptotics and Anomalies in the Problem of Quantization of the Adiabatic Invariant, Functional Anal. Appl., 24, 104-114 (1990) · Zbl 0715.58036 · doi:10.1007/BF01077703
[15] Karasev, M. V., “Simple Quantizations Formula,” in, 234-244 (1991), Boston: Birkhauser, Boston · Zbl 0767.58017
[16] Karasev, M. V., Connections Over Lagrangian Submanifolds and Certain Problems of Semiclassical Approximation, J. Sov. Math., 59, 1053-1062 (1992) · Zbl 0780.58051 · doi:10.1007/BF01480686
[17] Karasev, M. V., Contribution to the Symplectic Structure in the Quantization Rule Due to Noncommutativity of Adiabatic Parameters, Russ. J. Math. Phys., 23, 2, 207-218 (2016) · Zbl 1348.81281 · doi:10.1134/S1061920816020060
[18] Karasev, M. V.; Maslov, V. P., “Nonlinear Poisson Brackets. Geometry and Quantization,” in (1993), Providence: AMS, Providence · Zbl 0776.58003
[19] Maslov, V. P.; Fedoriuk, M. V., Semiclassical Approximation in Quantum Mechanics (1981), Dordrecht, Holland: D. Reidel Publishing Company, Dordrecht, Holland · Zbl 0458.58001 · doi:10.1007/978-94-009-8410-3
[20] Marsden, J. E.; Montgomery, R.; Ratiu, T., Reduction, Symmetry and Phases in Mechanics, Memoirs of AMS Providence, 88, 436, 1-110 (1990) · Zbl 0713.58052
[21] Montgomery, R., The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Non-Integrable Case, Commun. Math. Phys., 120, 269-294 (1988) · Zbl 0689.58043 · doi:10.1007/BF01217966
[22] Neishtadt, A., On the Change in the Adiabatic Invariant on Crossing a Separatrix in Systems with Two Degrees of Freedom, J. Appl. Math. Mech., 51, 5, 586-592 (1987) · Zbl 0677.70024 · doi:10.1016/0021-8928(87)90006-2
[23] Neishtadt, A., Averaging Method and Adiabatic Invariants, Hamiltonian dynamical systems and application, W. Criag ed.,, 0, 53-66 (2008) · Zbl 1135.70006 · doi:10.1007/978-1-4020-6964-2_3
[24] Teufel, S., Adiabatic Perturbation Theory in Quantum Dynamics (2003), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1053.81003 · doi:10.1007/b13355
[25] Vorobiev, Yu., Averaging of Poisson Structures, AIP Conference Proceedings, 1079, 1, 235-240 (2008) · Zbl 1169.53062 · doi:10.1063/1.3043864
[26] Vorobiev, Yu. M., The Averaging in Hamiltonian Systems on Slow-Fast Phase Spaces with \(\mathbb{S}^1 \)-Symmetry, Phys. Atom. Nuclei, 74, 12, 1770-1774 (2011) · doi:10.1134/S1063778811070179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.