Skip to main content

Averaging method and adiabatic invariants

  • Conference paper
Hamiltonian Dynamical Systems and Applications

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

There are many problems that lead to analysis of Hamiltonian dynamical systems in which one can distinguish motions of two types: slow motions and fast motions. Adiabatic perturbation theory is a mathematical tool for the asymptotic description of dynamics in such systems. This theory allows to construct adiabatic invariants, which are approximate first integrals of the systems. These quantities change by small amounts on large time intervals, over which the variation of slow variables is not small. Adiabatic invariants usually arise as first integrals of the system after having been averaged over the fast dynamics. Adiabatic invariants are important dynamical quantities. In particular, if a system has sufficiently many adiabatic invariants, then the motion over long time intervals is close to regular. On the other hand, the destruction of adiabatic invariance leads to chaotic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anosov, D. V.: Averaging in systems of ordinary differential equations with rapidly oscillating solutions. Izv. Akad. Nauk SSSR, Ser. Mat. 24, 721-742 (1960) (Russian)

    MATH  MathSciNet  Google Scholar 

  2. Arnold, V. I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv. 18, No. 6, 85-191 (1963)

    Article  Google Scholar 

  3. Arnold, V. I.: Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution. Sov. Math., Dokl. 6, 331-334 (1965)

    Google Scholar 

  4. Arnold, V. I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  5. Arnold, V. I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1988)

    Google Scholar 

  6. Arnold, V. I., Kozlov, V. V., Neishtadt, A. I.: Mathematical Aspects of Classical and Celestial Mechanics (Dynamical Systems III. Encyclopedia of Mathematical Sciences), 3rd edition. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Bakhtin, V. I.: Averaging in multifrequency systems. Funct. Anal. Appl. 20, 83-88 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burgers, J. M.: Adiabatic invariants of mechanical systems, I, II, III. Proc. Roy. Acad. Amsterdam 20, 149-169 (1917/18)

    Google Scholar 

  9. Dirac, P. A. M.: The adiabatic invariance of the quantum integrals. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 107, 725-734 (1925)

    Article  Google Scholar 

  10. Dodson, M. M., Rynne, B. P., Vickers, J. A. G.: Averaging in multifrequency systems. Nonlinearity 2, 137-148 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. .Dolgopyat D.: Repulsion from Resonances. Preprint Univ. of Maryland (2004)

    Google Scholar 

  12. Dykhne, A. M.: Quantum transitions in the adiabatic approximation. Sov. Phys., JETP 11, 411-415 (1960)

    MATH  Google Scholar 

  13. Gorelyshev, I. V., Neishtadt, A. I.: On the adiabatic perturbation theory for systems with impacts. J. Appl. Math. Mech. 70, No. 1, 4-17 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kasuga, T.: On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics. I, II, III. Proc. Japan Acad. 37, 366-371, 372-376, 377-382 (1961)

    Article  MathSciNet  Google Scholar 

  15. Landau, L. D., Lifshits, E. M.: Course of Theoretical Physics. Vol. 1: Mechanics. Addison-Wesley, Reading, MA (1958)

    Google Scholar 

  16. Navarro, L., Pérez, E.: Paul Ehrenfest: The genesis of the adiabatic hypothesis, 1911-1914. Arch. Hist. Exact Sci. 60, 209-267 (2006).

    Article  MathSciNet  Google Scholar 

  17. Neishtadt, A. I.: Passage through a resonance in the two-frequency problem. Sov. Phys., Dokl. 20,189-191 (1975).

    MATH  Google Scholar 

  18. Neishtadt, A. I.: Averaging in multifrequency systems. II. Sov. Phys., Dokl. 21, 80-82 (1976).

    Google Scholar 

  19. Neishtadt, A. I.: On the accuracy of conservation of the adiabatic invariant. J. Appl. Math. Mech. 45, No. 1, 58-63 (1982).

    Article  Google Scholar 

  20. 20. Neishtadt, A. I.: On destruction of adiabatic invariants in multi-frequency systems. In: Perelló, C. (ed.) et al. Proc. Int. Conf. on Differential Equations EQUADIFF 91 (Barcelona, Spain, 1991). Vol. 1, 2. World Scientific, Singapore, 195-207 (1993)

    Google Scholar 

  21. Neishtadt, A. I.: On the accuracy of persistence of an adiabatic invariant in single-frequency systems. Regul. Chaotic Dyn. 5, No. 2, 213-218 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Neishtadt, A. I.: Capture into resonance and scattering on resonances in two-frequency systems. Proc. Steklov Inst. Math. 250, 183-203 (2005)

    MathSciNet  Google Scholar 

  23. Ramis, J.-P., Schäfke, R.: Gevrey separation of fast and slow variables. Nonlinearity 9, 353-384 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Slutskin, A. A.: On the motion of a one-dimensional non-linear oscillator in adiabatic conditions. Sov. Phys., JETP 18, 676-682 (1963)

    MathSciNet  Google Scholar 

  25. Treshchev, D.V.: The method of continuous averaging in the problem of separation of fast and slow motions. Regul. Chaotic. Dyn. 2, No. 3, 9-20 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Neishtadt, A. (2008). Averaging method and adiabatic invariants. In: Craig, W. (eds) Hamiltonian Dynamical Systems and Applications. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6964-2_3

Download citation

Publish with us

Policies and ethics