×

Typical field lines of Beltrami flows and boundary field line behaviour of Beltrami flows on simply connected, compact, smooth manifolds with boundary. (English) Zbl 1470.35269

Summary: We characterise the boundary field line behaviour of Beltrami flows on compact, connected manifolds with vanishing first de Rham cohomology group. Namely we show that except for an at most nowhere dense subset of the boundary, on which the Beltrami field may vanish, all other field lines at the boundary are smoothly embedded \(1\)-manifolds diffeomorphic to \(\mathbb{R}\), which approach the zero set as time goes to \(\pm\infty\). We then drop the assumptions of compactness and vanishing de Rham cohomology and prove that for almost every point on the given manifold, the field line passing through the point is either a non-constant, periodic orbit or a non-periodic orbit which comes arbitrarily close to the starting point as time goes to \(\pm\infty\). During the course of the proof, we in particular show that the set of points at which a Beltrami field vanishes in the interior of the manifold is countably \(1\)-rectifiable in the sense of Federer and hence in particular has a Hausdorff dimension of at most \(1\). As a consequence, we conclude that for every eigenfield of the curl operator, corresponding to a non-zero eigenvalue, there always exists exactly one nodal domain.

MSC:

35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
35Q85 PDEs in connection with astronomy and astrophysics
37C10 Dynamics induced by flows and semiflows
37E35 Flows on surfaces
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
53Z05 Applications of differential geometry to physics
58K45 Singularities of vector fields, topological aspects
60B05 Probability measures on topological spaces
76W05 Magnetohydrodynamics and electrohydrodynamics
35R01 PDEs on manifolds

References:

[1] Arnold, VI, O topologii trekhmernykh statsionarnykh techenii ideal’noi zhidkosti (on the topology of three-dimensional steady flows of an ideal fluid), PMM, 30, 1, 183-185 (1966) · Zbl 0156.23002
[2] Arnold, V.I.: The asymptotic Hopf invariant and its applications. In: Proceedings of the All-Union Summer School on Partial Differential Equations (Dilizhan, Erevan, Armenia), pp. 229-256. Armenian SSR Academy of Sciences Press (1974)
[3] Arnold, VI; Khesin, BA, Topological Methods in Hydrodynamics (1998), Springer · Zbl 0902.76001 · doi:10.1007/b97593
[4] Aronszajn, N.; Krzywicki, A.; Szarski, J., A unique continuation theorem for exterior differential forms on Riemannian manifolds, Ark. Mat., 4, 417-453 (1962) · Zbl 0107.07803 · doi:10.1007/BF02591624
[5] Avellaneda, M.; Laurence, P., On Woltjer’s variational principle for force-free fields, J. Math. Phys., 32, 5, 1240-1253 (1991) · Zbl 0850.76853 · doi:10.1063/1.529321
[6] Bär, C., Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math., 138, 183-202 (1999) · Zbl 0942.35064 · doi:10.1007/s002220050346
[7] Cantarella, J.; DeTurck, D.; Gluck, H.; Teytel, M., Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators, J. Math. Phys., 41, 5615-5641 (2000) · Zbl 1054.78500 · doi:10.1063/1.533429
[8] Cantarella, J.; DeTurck, D.; Gluck, H.; Teytel, M., The spectrum of the curl operator on spherically symmetric domains, Phys. Plasmas, 7, 7, 2766-2775 (2000) · doi:10.1063/1.874127
[9] Courant, R.; Hilbert, D., Methoden der Mathematischen Phyisk I (1924), Verlag von Julius Springer · JFM 50.0335.07 · doi:10.1007/978-3-662-36445-1
[10] Dombre, T.; Frisch, U.; Greene, JM; Hénon, M.; Mehr, A.; Soward, AM, Chaotic streamlines in the ABC flows, J. Fluid Mech., 167, 353-391 (1986) · Zbl 0622.76027 · doi:10.1017/S0022112086002859
[11] Enciso, A.; Peralta-Salas, D., Knots and links in steady solutions of the Euler equation, Ann. Math., 175, 1, 345-367 (2012) · Zbl 1238.35092 · doi:10.4007/annals.2012.175.1.9
[12] Enciso, A.; Peralta-Salas, D., Existence of knotted vortex tubes in steady Euler flows, Acta Math., 214, 61-134 (2015) · Zbl 1317.35184 · doi:10.1007/s11511-015-0123-z
[13] Etnyre, J.; Ghrist, R., Stratified integrals and unknots in inviscid flows, Cont. Math., 246, 99-112 (1999) · Zbl 0989.76010 · doi:10.1090/conm/246/03777
[14] Etnyre, J.; Ghrist, R., Contact topology and hydrodynamics I: Beltrami fields and the Seifert conjecture, Nonlinearity, 13, 2, 441-458 (2000) · Zbl 0982.76021 · doi:10.1088/0951-7715/13/2/306
[15] Etnyre, J.; Ghrist, R., Contact topology and hydrodynamics III: knotted flowlines, Trans. Am. Math. Soc., 352, 12, 5781-5794 (2000) · Zbl 0960.76020 · doi:10.1090/S0002-9947-00-02651-9
[16] Etnyre, J.; Ghrist, R., An index for closed orbits in Beltrami fields, Physica D, 159, 180-189 (2001) · Zbl 0979.53018 · doi:10.1016/S0167-2789(01)00343-8
[17] Etnyre, J.; Ghrist, R., Contact topology and hydrodynamics II: solid tori, Ergod. Theory Dyn. Syst., 22, 3, 819-833 (2002) · Zbl 1098.76011 · doi:10.1017/S0143385702000408
[18] Federer, H., Geometric Measure Theory (1969), Springer · Zbl 0176.00801
[19] Ginzburg, V.; Khesin, B., Steady fluid flows and symplectic geometry, J. Geom. Phys., 14, 195-210 (1994) · Zbl 0805.58023 · doi:10.1016/0393-0440(94)90006-X
[20] Gottschalk, WH; Hedlund, GA, The dynamics of transformation groups, Trans. Am. Math. Soc., 65, 3, 348-359 (1949) · Zbl 0033.30602 · doi:10.1090/S0002-9947-1949-0030130-2
[21] Grebenkov, DS; Nguyen, B-T, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55, 4, 601-667 (2013) · Zbl 1290.35157 · doi:10.1137/120880173
[22] Hardt, R.; Simon, L., Nodal sets for solutions of elliptic equations, J. Differ. Geom., 30, 2, 505-522 (1989) · Zbl 0692.35005
[23] Hasselblatt, B.; Katok, A., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge University Press · Zbl 0878.58020
[24] Hirsch, MW, Differential Topology (1976), Springer · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[25] Hofer, H., Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., 114, 515-563 (1993) · Zbl 0797.58023 · doi:10.1007/BF01232679
[26] Lee, JM, Introduction to Smooth Manifolds (2012), Springer · Zbl 1258.53002 · doi:10.1007/978-1-4419-9982-5
[27] Lee, JM, Introduction to Riemannian Manifolds (2018), Springer · Zbl 1409.53001 · doi:10.1007/978-3-319-91755-9
[28] Logunov, A., Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math., 187, 1, 221-239 (2018) · Zbl 1384.58020 · doi:10.4007/annals.2018.187.1.4
[29] Morel, J.; Solimini, S., Variational Methods in Image Segmentation (1995), Boston: Birkhäuser, Boston · doi:10.1007/978-1-4684-0567-5
[30] Nirenberg, L.: A proof of the malgrange preparation theorem. In: Proceedings of Liverpool Singularities—Symposium I Lecture Notes in Mathematics, pp. 97-105. Springer, Berlin (1971) · Zbl 0212.10702
[31] Schwarz, G., Hodge Decomposition—A Method for Solving Boundary Value Problems (1995), Springer · Zbl 0828.58002 · doi:10.1007/BFb0095978
[32] Sogge, CD; Zelditch, S., Lower bounds on the Hausdorff measure of nodal sets, Math. Res. Lett., 18, 1, 25-37 (2011) · Zbl 1242.58017 · doi:10.4310/MRL.2011.v18.n1.a3
[33] Sogge, CD; Zelditch, S., Lower bounds on the Hausdorff measure of nodal sets II, Math. Res. Lett., 19, 6, 1361-1364 (2012) · Zbl 1283.58020 · doi:10.4310/MRL.2012.v19.n6.a14
[34] Taubes, CH, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol., 11, 2117-2202 (2007) · Zbl 1135.57015 · doi:10.2140/gt.2007.11.2117
[35] Vainshtein, S.I.: Force-free magnetic fields with constant alpha. In: Topological Aspects of the Dynamics of Fluids and Plasmas, pp. 177-193 (1992) · Zbl 0788.76100
[36] Woltjer, L., A theorem on force-free magnetic fields, Proc. Natl. Acad. Sci. USA, 44, 489-491 (1958) · Zbl 0081.21703 · doi:10.1073/pnas.44.6.489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.