×

Classification results for a sub-elliptic system involving the \(\Delta_{\lambda}\)-Laplacian. (English) Zbl 1470.35086

Summary: In this paper, we study a system of the form \[ \begin{cases} - \Delta_{\lambda} u = v \\ - \Delta_{\lambda} v = u^p \end{cases} \text{ in } \mathbb{R}^N, \] where \(p \in \mathbb{R}\), and \(\Delta_{\lambda}\) is a sub-elliptic operator defined by \[ \Delta_{\lambda} = \sum\limits_{i = 1}^N \partial_{x_i} \left(\lambda_i^2 \partial_{x_i}\right). \] Under some general hypotheses of the functions \(\lambda_i, i = 1,2, \ldots, N\), we first prove that the system has no positive super-solution when \(p \leq 1\). In the case \(p > 1\), we establish a Liouville type theorem for the class of stable positive solutions. This result is an extension of some result in [H. Hajlaoui et al., Pac. J. Math. 270, No. 1, 79–93 (2014; Zbl 1301.35051)] for the case of Laplace operator.

MSC:

35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35H20 Subelliptic equations
35J60 Nonlinear elliptic equations
35B35 Stability in context of PDEs
35J70 Degenerate elliptic equations

Citations:

Zbl 1301.35051
Full Text: DOI

References:

[1] KogojAE, LanconelliE. On semilinear δ_λ‐Laplace equation. Nonlinear Anal. 2012;75(12):4637-4649. · Zbl 1260.35020
[2] AnhCT, MyBK. Liouville‐type theorems for elliptic inequalities involving the δ_λ‐Laplace operator. Complex Variabl Elliptic Eq. 2016;61(7):1002-1013. · Zbl 1346.35030
[3] KogojAE, LanconelliE. Linear and semilinear problems involving Δ_λ‐Laplacians. In: Proceedings of the International Conference “Two nonlinear days in Urbino 2017”, Vol. 25; 2018:167-178. of Electron. J. Differ. Equ. Conf., Texas State Univ.-San Marcos, Dept. Math., San Marcos, TX. · Zbl 1400.35130
[4] KogojAE, SonnerS. Attractors for a class of semi‐linear degenerate parabolic equations. J Evol Equ. 2013;13(3):675-691. · Zbl 1286.35046
[5] KogojAE, SonnerS, Hardy type inequalities for Δ_λ,‐Laplacians. Complex Var. Elliptic Equ.2016;61(3):422-442. · Zbl 1362.35107
[6] LuyenDT, TriNM. Existence of solutions to boundary‐value problems for similinear Δ_γ. Differ Equ Math Notes 97. 2015;1‐2:73-84. · Zbl 1325.35051
[7] RahalB. Liouville‐type theorems with finite Morse index for semilinear δ_λ‐Laplace operators. noDEA Nonlinear Differ Equ App. 2018;25(3):19. Art. 21. · Zbl 1395.35095
[8] ArmstrongSN, SirakovB. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm Part Differ Eq. 2011;36(11):2011-2047. · Zbl 1230.35030
[9] CowanC. Liouville theorems for stable Lane‐Emden systems with biharmonic problems. Nonlinearity. 2013;26(8):2357-2371. · Zbl 1277.35159
[10] CowanCA. LIouville theorem for a fourth order Hénon equation. Adv Nonlinear Stud.2014;14(3):767-776. · Zbl 1301.35023
[11] HajlaouiH, HarrabiA, YeD. On stable solutions of the biharmonic problem with polynomial growth. Pacific J Math. 2014;270(1):79-93. · Zbl 1301.35051
[12] HuL‐G, ZengJ. Liouville type theorems for stable solutions of the weighted elliptic system. J Math Anal Appl. 2016;437(2):882-901. · Zbl 1336.35091
[13] WeiJ, YeD. Liouville theorems for stable solutions of biharmonic problem. Math Ann. 2013;356(4):1599-1612. · Zbl 1277.35156
[14] WeiJ, XuX. Classification of solutions of higher order conformally invariant equations. Math Ann. 1999;313(2):207-228. · Zbl 0940.35082
[15] LinCS. A classification of solutions of a conformally invariant fourth order equation in \(\mathbb{R}^n\). Comment Math Helv. 1998;73(2):206-231. · Zbl 0933.35057
[16] WeiJ, XuX, YangW. On the classification of stable solutions to biharmonic problems in large dimensions. Pacific J Math. 2013;263(2):495-512. · Zbl 1277.35155
[17] KarageorgisP. Stability and intersection properties of solutions to the nonlinear biharmonic equation. Nonlinearity. 2009;22(7):1653-1661. · Zbl 1172.31005
[18] YuX. Liouville type theorem for nonlinear elliptic equation involving Grushin operators. Commun Contemp Math 17. 2015;5(1450050):12. · Zbl 1326.35139
[19] MonticelliDD. The method of moving planes for a class of degenerate elliptic linear operators. J Eur Math Maximum principles Soc (JEMS). 2010;12(3):611-654. · Zbl 1208.35068
[20] Capuzzo DolcettaI, CutriA. On the Liouville property for sublaplacians, Annali della Scuola Normale Superiore di Pisa ‐ Classe di Scienze 25, 1‐2; 1997.
[21] D’AmbrosioL, LucenteS. Nonlinear Liouville theorems for Grushin and Tricomi operators. J Differ Eq. 2003;193(2):511-541. · Zbl 1040.35012
[22] DuongAT, NguyenNT. Liouville type theorems for elliptic equations involving Grushin operator and advection. Electron J Differ Eq Paper. 2017;108:11. · Zbl 1370.35125
[23] DuongAT, PhanQH. Liouville type theorem for nonlinear elliptic system involving Grushin operator. J Math Anal Appl. 2017;454(2):785-801. · Zbl 1371.35078
[24] D’AmbrosioL, MathGrushintypeoperators. Proc Amer Hardy inequalities related to Soc. 2004;132(3):725-734. · Zbl 1049.35077
[25] MontenegroM. Minimal solutions for a class of elliptic systems. Bull London Math Soc. 2005;37(3):405-416. · Zbl 1146.35350
[26] ChengZ, HuangG, LiC. On the Hardy‐Littlewood‐Sobolev type systems. Commun Pure Appl Anal. 2016;15(6):2059-2074. · Zbl 1353.35171
[27] SoupletP. The proof of the Lane‐Emden conjecture in four space dimensions. Adv Math. 2009;221(5):1409-1427. · Zbl 1171.35035
[28] SoutoMAS. A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems. Differ Integral Equ. 1995;8(5):1245-1258. · Zbl 0823.35064
[29] CowanC. Stability of entire solutions to supercritical elliptic problems involving advection. Nonlinear Anal. 2014;104:1-11. · Zbl 1288.35241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.