×

Liouville-type theorems with finite Morse index for semilinear \(\Delta_{\lambda}\)-Laplace operators. (English) Zbl 1395.35095

Summary: In this paper we study solutions, possibly unbounded and sign-changing, of the following equation \[ -\Delta_{\lambda} u=|x|_{\lambda}^a |u|^{p-1}u \quad\text{in } \mathbb {R}^n, \] where \(n\geq 1\), \(p>1\), \(a \geq 0\) and \(\Delta_{\lambda}\) is a strongly degenerate elliptic operator, the functions \(\lambda =(\lambda_1,\dots, \lambda_k) : \; \mathbb {R}^n \rightarrow \mathbb {R}^k\) satisfies some certain conditions, and \(|.|_{\lambda}\) the homogeneous norm associated to the \(\Delta_{\lambda}\)-Laplacian. We prove various Liouville-type theorems for smooth solutions under the assumption that they are stable or stable outside a compact set of \(\mathbb {R}^n\). First, we establish the standard integral estimates via stability property to derive the nonexistence results for stable solutions. Next, by mean of the Pohozaev identity, we deduce the Liouville-type theorem for solutions stable outside a compact set.

MSC:

35J70 Degenerate elliptic equations
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs

References:

[1] Anh, C.T., My, B.K.: Liouville-type theorems for elliptic inequalities involving the \(Δ _λ \)-Laplace operator. Complex Var. Elliptic Equ. (2016). https://doi.org/10.1080/17476933.2015.1131685 · Zbl 1346.35030
[2] Cuccu, F; Mohammed, A; Porru, G, Extensions of a theorem of Cauchy-Liouville, J. Math. Anal. Appl., 369, 222-231, (2010) · Zbl 1192.35068 · doi:10.1016/j.jmaa.2010.02.058
[3] Farina, A, On the classification of solutions of the Lane-Emden equation on unbounded domains of \({\mathbb{R}}^n\), J. Math. Pures Appl., 87, 537-561, (2007) · Zbl 1143.35041 · doi:10.1016/j.matpur.2007.03.001
[4] Franchi, B., Lanconelli, E.: Une métrique associée à une classe d’opérateurs elliptiques dégénérés, in: Conference on Linear Partial and Pseudodifferential Operators, Torino, 1982, in: Rend. Semin. Mat. Univ. Politec. Torino, 1983, 1984, pp. 105-114 (special issue) · Zbl 0553.35033
[5] Gidas, B; Spruck, J, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34, 525-598, (1981) · Zbl 0465.35003 · doi:10.1002/cpa.3160340406
[6] Kogoj, AE; Lanconelli, E, On semilinear \(Δ _{λ }\)-Laplace equation, Nonlinear Anal., 75, 4637-4649, (2012) · Zbl 1260.35020 · doi:10.1016/j.na.2011.10.007
[7] Kogoj, AE; Lanconelli, E, Liouville theorem for \(X\)-elliptic operators, Nonlinear Anal., 70, 2974-2985, (2009) · Zbl 1195.35116 · doi:10.1016/j.na.2008.12.029
[8] Kogoj, AE; Lanconelli, E, \(L^p\)-Liouville theorems for invariant partial differential equations in \({\mathbb{R}}^n\), Nonlinear Anal., 121, 188-205, (2015) · Zbl 1320.35115 · doi:10.1016/j.na.2014.12.004
[9] Kogoj, A.E., Lanconelli, E.: Liouville theorems for a class of linear second order operators with nonnegative characteristic form . Bound. Value Probl. Art. ID 48232, 16 pp (2007) · Zbl 1158.35338
[10] Kogoj, A.E., Sonner, S.: Hard-type inequalities for \(Δ _λ \)-Laplacians. Complex Var. Elliptic Equ. (2015). https://doi.org/10.1080/17476933.2015.1088530 · Zbl 1260.35020
[11] Pohozaev, SI, Eigenfunctions of the equation \(Δ u + λ f (u) = 0\), Dokl. Akad. Nauk SSSR, 165, 33-36, (1965)
[12] Quittner, P., Souplet, P.: Superlinear Parablolic Problems: Blow-up, Global Existence and Steady States. Birkhäuser Verlag, Basel (2007) · Zbl 1128.35003
[13] Serrin, J; Zou, H, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, 79-142, (2002) · Zbl 1059.35040 · doi:10.1007/BF02392645
[14] Wang, C; Ye, D, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262, 1705-1727, (2012) · Zbl 1246.35092 · doi:10.1016/j.jfa.2011.11.017
[15] Yu, X.: Liouville type theorem for nonlinear elliptic equation involving Grushin operators. Commun. Contem. Math. 17, 1450050 (2015) · Zbl 1326.35139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.