×

\(q\)-dimensions of highest weight crystals and cyclic sieving phenomenon. (English) Zbl 1470.05169

Summary: In this paper, we compute explicitly the \(q\)-dimensions of highest weight crystals modulo \(q^n-1\) for a quantum group of arbitrary finite type under certain assumption, and interpret the modulo computations in terms of the cyclic sieving phenomenon. This interpretation gives an affirmative answer to the conjecture by P. Alexandersson and N. Amini [Discrete Math. 342, No. 6, 1581–1601 (2019; Zbl 1414.05300)]. As an application, under the assumption that \(\lambda\) is a partition of length \(<m\) and there exists a fixed point in \(\mathsf{SST}_m(\lambda)\) under the action \(\mathsf{c}\) arising from the crystal structure, we show that the triple \((\mathsf{SST}_m (\lambda),\langle\mathsf{c}\rangle,\mathsf{s}_\lambda(1,q,q^2,\dots,q^{m-1}))\) exhibits the cycle sieving phenomenon if and only if \(\lambda\) is of the form \(((am)^b)\), where either \(b=1\) or \(m-1\). Moreover, in this case, we give an explicit formula to compute the number of all orbits of size \(d\) for each divisor \(d\) of \(n\).

MSC:

05E10 Combinatorial aspects of representation theory
05E16 Combinatorial aspects of groups and algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
13A50 Actions of groups on commutative rings; invariant theory

Citations:

Zbl 1414.05300

References:

[1] Alexandersson, P.; Amini, N., The cone of cyclic sieving phenomena, Discrete Math., 342, 6, 1581-1601 (2019) · Zbl 1414.05300
[2] P. Alexandersson, E.K. Oğuz, S. Linusson, Promotion and cyclic sieving on families of SSYT, arXiv:2007.10478.
[3] P. Alexandersson, S. Pfannerer, M. Rubey, J. Uhlin, Skew characters and cyclic sieving, arXiv:2004.01140. · Zbl 1473.05311
[4] Bandlow, J.; Schilling, A.; Thiéry, N., On the uniqueness of promotion operators on tensor products of type \(A\) crystals, J. Algebraic Combin., 31, 2, 217-251 (2010) · Zbl 1228.05286
[5] Bennett, M.; Madill, B.; Stokke, A., Jeu-de-taquin promotion and a cyclic sieving phenomenon for semistandard hook tableaux, Discrete Math., 319, 62-67 (2014) · Zbl 1281.05128
[6] Berenstein, A.; Zelevinsky, A., Canonical bases for the quantum group of type \(A_r\) and piecewise-linear combinatorics, Duke Math. J., 82, 3, 473-502 (1996) · Zbl 0898.17006
[7] Bump, D.; Schilling, A., Crystal Bases. Representations and Combinatorics (2017), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1440.17001
[8] Fontaine, B.; Kamnitzer, J., Cyclic sieving rotation and geometric representation theory, Selecta Math. (N.S.), 20, 2, 609-625 (2014) · Zbl 1295.22018
[9] Fulton, W., (Young Tableaux. With Applications to Representation Theory and Geometry. Young Tableaux. With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, vol. 35 (1997), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0878.14034
[10] Hong, J.; Kang, S.-J., (Introduction To Quantum Groups and Crystal Bases. Introduction To Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, vol. 42 (2002), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1134.17007
[11] James, G.; Kerber, A., (The Representation Theory of the Symmetric Group. The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and Its Applications, vol. 16 (1981), Addison-Wesley Publishing Co. Reading: Addison-Wesley Publishing Co. Reading Mass) · Zbl 0491.20010
[12] Kac, V. G., (Simple Lie Groups and the Legendre Symbol, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980). Simple Lie Groups and the Legendre Symbol, Algebra, Carbondale 1980 (Proc. Conf., Southern Illinois Univ., Carbondale, Ill., 1980), Lecture Notes in Math., vol. 848 (1981), Springer: Springer Berlin), 110-123 · Zbl 0498.22013
[13] Kac, V. G., Infinite-Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0716.17022
[14] Kashiwara, M., Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys., 133, 2, 249-260 (1990) · Zbl 0724.17009
[15] Kashiwara, M., On crystal bases of the \(Q\)-analogue of universal enveloping algebras, Duke. Math. J., 63, 2, 465-516 (1991) · Zbl 0739.17005
[16] Kashiwara, M., The crystal base and Littelmann’s refined Demazure character formula, Duke. Math. J., 71, 3, 839-858 (1993) · Zbl 0794.17008
[17] Lascoux, A.; Schützenberger, M.-P., Le monode plaxique, (Noncommutative Structures in Algebra and Geometric Combinatorics (Naples, 1978). Noncommutative Structures in Algebra and Geometric Combinatorics (Naples, 1978), Quad. Ricerca Sci., 109 (1981), CNR: CNR Rome), 129-156
[18] Lusztig, G., (Introduction to Quantum Groups. Introduction to Quantum Groups, Progress in Mathematics, vol. 110 (1993), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0788.17010
[19] Macdonald, I. G., (Symmetric Functions and Hall Polynomials. Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs (1995), Oxford Science Publications, The Clarendon Press, Oxford University Press: Oxford Science Publications, The Clarendon Press, Oxford University Press New York) · Zbl 0824.05059
[20] Oh, Y.-T.; Park, E., Crystals, semistandard tableaux and cyclic sieving phenomenon, Electron. J. Combin., 26, 4 (2019), Paper No. 4.39, 19 pp · Zbl 1428.05329
[21] Reiner, V.; Stanton, D.; White, D., The cyclic sieving phenomenon, J. Combin. Theory Ser. A, 108, 1, 17-50 (2004) · Zbl 1052.05068
[22] Rhoades, B., Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, 117, 1, 38-76 (2010) · Zbl 1230.05289
[23] Rush, D. B., Restriction of global bases and Rhoades’s theorem, Adv. Math., 384, Article 107725 pp. (2021) · Zbl 1497.17021
[24] Sagan, B., The cyclic sieving phenomenon: a survey, (Surveys in Combinatorics 2011. Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Ser., vol. 392 (2011), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 183-233 · Zbl 1233.05028
[25] Schützenberger, M. P., Promotion des morphismes d’ensembles ordonnés, Discrete Math., 2, 73-94 (1972) · Zbl 0279.06001
[26] Schützenberger, M. P., (La Correspondance de Robinson, Combinatoire et Représentation du Groupe Symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976). La Correspondance de Robinson, Combinatoire et Représentation du Groupe Symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Lecture Notes in Math., vol. 579 (1977), Springer: Springer Berlin), 59-113 · Zbl 0398.05011
[27] Stanley, R., (Enumerative Combinatorics. 2. Enumerative Combinatorics. 2, Cambridge Studies in Advanced Mathematics, vol. 62 (1999), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0928.05001
[28] Stembridge, J. R., On minuscule representations plane partitions and involutions in complex Lie groups, Duke Math. J., 73, 2, 469-490 (1994) · Zbl 0805.22006
[29] Stembridge, J. R., Canonical bases and self-evacuating tableaux, Duke Math. J., 82, 3, 585-606 (1996) · Zbl 0869.17011
[30] Westbury, B. W., Invariant tensors and the cyclic sieving phenomenon, Electron. J. Combin., 23, 4 (2016), Paper No. 4.25, 40 pp · Zbl 1351.05231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.