×

Immediate smoothing and global solutions for initial data in \(L^1\times W^{1,2}\) in a Keller-Segel system with logistic terms in 2D. (English) Zbl 1469.35075

Summary: This paper deals with the logistic Keller-Segel model \[ \begin{cases} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+\kappa u-\mu u^2, \\ v_t=\Delta v-v+u \end{cases} \] in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters \(\chi,\kappa\in\mathbb{R}\) and \(\mu>0)\), and shows that any nonnegative initial data \((u_0, v_0)\in L^1\times W^{1,2}\) lead to global solutions that are smooth in \(\bar{\Omega}\times (0,\infty)\).

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35A09 Classical solutions to PDEs
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Ainseba, B., Bendahmane, M. and Noussair, A.. A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal. Real: World Appl. 9 (2008), 2086-2105. · Zbl 1156.35404
[2] Andasari, V., Gerisch, A., Lolas, G., South, A. P. and Chaplain, M. A. J.. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63 (2011), 141-171. · Zbl 1230.92022
[3] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M.. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. · Zbl 1326.35397
[4] Biler, P.. Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715-743. · Zbl 0913.35021
[5] De La Vallée Poussin, C.. Sur l’intégrale de Lebesgue. Trans. Am. Math. Soc. 16 (1915), 435-501. · JFM 45.0441.06
[6] Dibenedetto, E.. On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup: Pisa Cl. Sci. (4)13 (1986), 487-535. · Zbl 0635.35052
[7] Dunford, N. and Schwartz, J. T.. Linear operators. I. General theory. Pure and applied mathematics, vol. 7 (New York, London: Interscience Publishers, 1958). · Zbl 0084.10402
[8] Friedman, A.. Partial differential equations (New York-Montreal, Que.-London: Holt: Rinehart and Winston Inc., 1969). · Zbl 0224.35002
[9] Fuest, M.. Finite-time blow-up in a two-dimensional Keller-Segel system with an environmental dependent logistic source. Nonlinear Anal. Real World Appl. 52 (2020), 103022. · Zbl 1471.92060
[10] Heihoff, F.. On the existence of global smooth solutions to the parabolic-elliptic Keller-Segel system with irregular initial data. preprint. · Zbl 1465.35107
[11] Herrero, M. A. and Velazquez, J. J. L.. Singularity patterns in a chemotaxis model. Math. Ann. 306 (1996), 583-623. · Zbl 0864.35008
[12] Herrero, M. A. and Velázquez, J. J. L.. A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup: Pisa Cl. Sci. (4)24 (1997), 633-683. · Zbl 0904.35037
[13] Horstmann, D.. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. · Zbl 1071.35001
[14] Horstmann, D. and Wang, G.. Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12 (2001), 159-177. · Zbl 1017.92006
[15] Jäger, W. and Luckhaus, S.. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329 (1992), 819. · Zbl 0746.35002
[16] Keller, E. F. and Segel, L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. · Zbl 1170.92306
[17] Ladyženskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N.. Linear and quasilinear equations of parabolic type.Translated from the Russian by S. Smith: Translations of Mathematical Monographs, vol. 23. (Providence, R.I.: American Mathematical Society, 1968). · Zbl 0174.15403
[18] Lankeit, J.. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J Differ. Equ. 258 (2015), 1158-1191. · Zbl 1319.35085
[19] Lankeit, J. and Winkler, M.. Facing low regularity in chemotaxis systems. Jahresber. Dtsch. Math.-Ver. 122 (2020), 35-64. · Zbl 1436.92004
[20] Lieberman, G. M.. Second order parabolic differential equations (River Edge, NJ: World: Scientific Publishing Co. Inc., 1996). · Zbl 0884.35001
[21] Mizoguchi, N. and Winkler, M.. Blow-up in the two-dimensional parabolic Keller-Segel system. 2013. Preprint.
[22] Nagai, T.. Global existence and blowup of solutions to a chemotaxis system. In Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, pp. 777-787 (2001). · Zbl 1042.35574
[23] Nakaguchi, E. and Osaki, K.. Global existence of solutions to an n-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth and superlinear production. Osaka J. Math. 55 (2018), 51-70. · Zbl 1391.35189
[24] Nirenberg, L.. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3)13 (1959), 115-162. · Zbl 0088.07601
[25] Osaki, K. and Yagi, A.. Global existence for a chemotaxis-growth system in ℝ^2. Adv. Math. Sci. Appl. 12 (2002), 587-606. · Zbl 1054.35111
[26] Tello, J. I. and Winkler, M.. A chemotaxis system with logistic source. Commun. Partial: Differ. Equ. 32 (2007), 849-877. · Zbl 1121.37068
[27] Tiel, J. V.. Convex analysis: an introductory text, (Chichester: John Wiley, 1984). · Zbl 0565.49001
[28] Viglialoro, G.. Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34 (2017), 520-535. · Zbl 1355.35094
[29] Viglialoro, G. and Woolley, T. E.. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete Contin. Dyn. Syst. Ser. B23 (2018), 3023-3045. · Zbl 1409.35046
[30] Winkler, M.. Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248 (2010), 2889-2905. · Zbl 1190.92004
[31] Winkler, M.. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35 (2010), 1516-1537. · Zbl 1290.35139
[32] Winkler, M.. Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384 (2011), 261-272. · Zbl 1241.35028
[33] Winkler, M.. Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (2018), 40, Art. 69. · Zbl 1395.35048
[34] Winkler, M.. How strong singularities can be regularized by logistic degradation in the Keller-Segel system?. Ann Mat. Pura Appl. (4)198 (2019), 1615-1637. · Zbl 1437.35004
[35] Winkler, M.. Instantaneous regularization of distributions from (C^0)* × L^2 in the one-dimensional parabolic Keller-Segel system. 2019. preprint. · Zbl 1428.35632
[36] Winkler, M.. The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L^1. Adv. Nonlinear Anal. 9 (2020), 526-566. · Zbl 1419.35099
[37] Xiang, T.. How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?. J. Math. Anal. Appl. 459 (2018), 1172-1200. · Zbl 1380.35032
[38] Xiang, T.. Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system. J. Math. Phys. 59 (2018), 081502, 11. · Zbl 1395.92025
[39] Zhigun, A.. Generalized global supersolutions with mass control for systems with taxis. SIAM J. Math. Anal. 51 (2019), 2425-2443. · Zbl 1428.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.