×

Grothendieck’s pairing on Néron component groups: Galois descent from the semistable case. (English) Zbl 1469.11184

Summary: In our previous study of duality for complete discrete valuation fields with perfect residue field, we treated coefficients in finite flat group schemes. In this paper, we treat abelian varieties. This, in particular, implies Grothendieck’s conjecture on the perfectness of his pairing between the Néron component groups of an abelian variety and its dual. The point is that our formulation is well suited to Galois descent. From the known case of semistable abelian varieties, we deduce the perfectness in full generality. We also treat coefficients in tori and, more generally, \(1\)-motives.

MSC:

11G10 Abelian varieties of dimension \(> 1\)
11S25 Galois cohomology
14F20 Étale and other Grothendieck topologies and (co)homologies

References:

[1] M. Artin, Grothendieck Topologies, seminar notes, Harvard University, Cambridge, 1962. · Zbl 0208.48701
[2] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 23-58. · Zbl 0181.48802 · doi:10.1007/BF02684596
[3] M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Tome 1: Théorie des topos, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Lecture Notes in Math. 269, Springer, Berlin, 1972. · Zbl 0234.00007
[4] M. Artin and J. S. Milne, Duality in the flat cohomology of curves, Invent. Math. 35 (1976), 111-129. · Zbl 0342.14007 · doi:10.1007/BF01390135
[5] L. Bégueri, Dualité sur un corps local à corps résiduel algébriquement clos, Mém. Soc. Math. France (N.S.) 4, Soc. Math. France, Paris, 1980/81. · Zbl 0502.14016
[6] D. Benson, S. B. Iyengar, and H. Krause, Module categories for group algebras over commutative rings, with an appendix by G. Stevenson, J. K-Theory 11 (2013), no. 2, 297-329. · Zbl 1291.20010 · doi:10.1017/is013001031jkt214
[7] A. Bertapelle, On perfectness of Grothendieck’s pairing for the \(l\)-parts of component groups, J. Reine Angew. Math. 538 (2001), 223-236. · Zbl 1028.14017
[8] A. Bertapelle, Local flat duality of abelian varieties, Manuscripta Math. 111 (2003), no. 2, 141-161. · Zbl 1059.14055 · doi:10.1007/s00229-003-0362-8
[9] A. Bertapelle and S. Bosch, Weil restriction and Grothendieck’s duality conjecture, J. Algebraic Geom. 9 (2000), no. 1, 155-164. · Zbl 0978.14044
[10] A. Bertapelle and C. D. González-Avilés, On the cohomology of tori over local fields with perfect residue field, Israel J. Math. 206 (2015), no. 1, 431-455. · Zbl 1329.11030
[11] A. Bertapelle and C. D. González-Avilés, On the perfection of schemes, Expo. Math. 36 (2018), no. 2, 197-220. · Zbl 1427.14004
[12] A. Bertapelle and C. D. González-Avilés, The Greenberg functor revisited, preprint, arXiv:1311.0051v4 [math.NT]. · Zbl 1446.11123
[13] M. Bester, Local flat duality of abelian varieties, Math. Ann. 235 (1978), no. 2, 149-174. · Zbl 0358.14021 · doi:10.1007/BF01405011
[14] B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque 369 (2015), 99-201. · Zbl 1351.19001
[15] B. Bhatt and P. Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017), no. 2, 329-423. · Zbl 1397.14064 · doi:10.1007/s00222-016-0710-4
[16] S. Bosch, Component groups of abelian varieties and Grothendieck’s duality conjecture, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 5, 1257-1287. · Zbl 0919.14026 · doi:10.5802/aif.1599
[17] S. Bosch and D. Lorenzini, Grothendieck’s pairing on component groups of Jacobians, Invent. Math. 148 (2002), no. 2, 353-396. · Zbl 1061.14042 · doi:10.1007/s002220100195
[18] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Ergeb. Math. Grenzgeb. (3) 21, Springer, Berlin, 1990. · Zbl 0705.14001
[19] N. Bourbaki, Commutative Algebra: Chapters 1-7, reprint of the 1989 English ed., Elem. Math., Springer, Berlin, 1998. · Zbl 0666.13001
[20] N. Bourbaki, Algebra II: Chapters 4-7, reprint of the 1990 English ed., Elem. Math., Springer, Berlin, 2003. · Zbl 0719.12001
[21] L. Breen, Extensions of abelian sheaves and Eilenberg-MacLane algebras, Invent. Math. 9 (1969/1970), 15-44. · Zbl 0177.51304 · doi:10.1007/BF01389887
[22] L. Breen, Extensions du groupe additif, Publ. Math. Inst. Hautes Études Sci. 48 (1978), 39-125. · Zbl 0404.14018 · doi:10.1007/BF02684313
[23] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982. · Zbl 0584.20036
[24] K. Česnavičius, Topology on cohomology of local fields, Forum Math. Sigma 3 (2015), art. ID e16. · Zbl 1396.11133 · doi:10.1017/fms.2015.18
[25] B. Conrad, Weil and Grothendieck approaches to adelic points, Enseign. Math. (2) 58 (2012), no. 1-2, 61-97. · Zbl 1316.14002 · doi:10.4171/LEM/58-1-3
[26] C. Cunningham and D. Roe, From the function-sheaf dictionary to quasicharacters of \(p\)-adic tori, J. Inst. Math. Jussieu 17 (2018), no. 1, 1-37. · Zbl 1387.14060 · doi:10.1017/S1474748015000286
[27] M. Demazure and P. Gabriel, Groupes algébriques, Tome I: Géométrie algébrique, généralités, groupes commutatifs, with an appendix “Corps de classes local” by M. Hazewinkel, North-Holland, Amsterdam, 1970. · Zbl 0203.23401
[28] W. D. Gillam, Localization of ringed spaces, Adv. Pure Math. 1 (2011), no. 5, 250-263. · Zbl 1247.14001 · doi:10.4236/apm.2011.15045
[29] M. J. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), no. 3, 624-648. · Zbl 0115.39004 · doi:10.2307/1970321
[30] M. J. Greenberg, Rational points in Henselian discrete valuation rings, Publ. Math. Inst. Hautes Études Sci. 31 (1966), 59-64. · Zbl 0142.00901 · doi:10.1090/S0002-9904-1966-11565-3
[31] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, I, Publ. Math. Inst. Hautes Études Sci. 20 (1964). · Zbl 0136.15901
[32] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Publ. Math. Inst. Hautes Études Sci. 28 (1966). · Zbl 0144.19904
[33] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967). · Zbl 0153.22301
[34] A. Grothendieck, Groupes de monodromie en géométrie algébrique, I, Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 I), Lecture Notes in Math. 288, Springer, Berlin, 1972. · Zbl 0248.14006
[35] L. H. Halle and J. Nicaise, Motivic zeta functions of abelian varieties, and the monodromy conjecture, Adv. Math. 227 (2011), no. 1, 610-653. · Zbl 1230.11076 · doi:10.1016/j.aim.2011.02.011
[36] D. Harari and T. Szamuely, Arithmetic duality theorems for 1-motives, J. Reine Angew. Math. 578 (2005), 93-128. · Zbl 1088.14012
[37] M. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren Math. Wiss. 332, Springer, Berlin, 2006. · Zbl 1118.18001
[38] K. Kato, “Duality theories for the \(p\)-primary étale cohomology, I” in Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, 127-148. · Zbl 0800.14009
[39] K. Kato, “Generalized class field theory” in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 419-428. · Zbl 0827.11073
[40] Y. Koya, A generalization of Tate-Nakayama theorem by using hypercohomology, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 3, 53-57. · Zbl 0795.11060 · doi:10.3792/pjaa.69.53
[41] S. Lang, Algebra, 3rd ed., Grad. Texts in Math. 211, Springer, New York, 2002. · Zbl 0984.00001
[42] R. P. Langlands, Representations of abelian algebraic groups, Pacific J. Math. 181 (1997), no. 3, 231-250. · Zbl 0910.11045
[43] S. Mac Lane, “Homologie des anneaux et des modules” in Colloque de topologie algébrique (Louvain, 1956), Georges Thone, Liège, 1957, 55-80. · Zbl 0084.26703
[44] S. Mac Lane, Homology, Grundlehren Math. Wiss. 114, Academic Press, New York, 1963.
[45] W. G. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), no. 4, 1093-1124. · Zbl 0623.14023 · doi:10.1215/S0012-7094-86-05354-8
[46] J. S. Milne, Weil-Châtelet groups over local fields, Ann. Sci. Éc. Norm. Supér. (4) 3 (1970), 273-284. · Zbl 0212.53201
[47] J. S. Milne, Addendum: “Weil-Châtelet groups over local fields” (Ann. Sci. École Norm. Sup. (4) 3 (1970), 273-284), Ann. Sci. Éc. Norm. Supér. (4) 5 (1972), 261-264. · Zbl 0241.14022
[48] J. S. Milne, Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, 1980. · Zbl 0433.14012
[49] J. S. Milne, Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, SC, 2006. · Zbl 1127.14001
[50] A. Neeman, Triangulated Categories, Ann. of Math. Stud. 148, Princeton Univ. Press, Princeton, 2001. · Zbl 0974.18008
[51] C. Pépin, Dualité sur un corps local de caractéristique positive à corps résiduel algébriquement clos, preprint, arXiv:1411.0742v1 [math.AG]. · Zbl 1326.14049
[52] J.-E. Roos, Derived functors of inverse limits revisited, J. Lond. Math. Soc. (2) 73 (2006), no. 1, 65-83. · Zbl 1089.18007 · doi:10.1112/S0024610705022416
[53] I. R. Šafarevič, Principal homogeneous spaces defined over a function field, Tr. Mat. Inst. Steklova. 64 (1961), 316-346. · Zbl 0129.12804
[54] J.-P. Serre, Groupes proalgébriques, Publ. Math. Inst. Hautes Études Sci. 7 (1960). · Zbl 0097.35901
[55] J.-P. Serre, Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105-154. · Zbl 0166.31103
[56] J.-P. Serre, Local Fields, Grad. Texts in Math. 67, Springer, New York, 1979. · Zbl 0423.12016
[57] J.-P. Serre, Algebraic Groups and Class Fields, Grad. Texts in Math. 117, Springer, New York, 1988. · Zbl 0703.14001
[58] J.-P. Serre, Galois Cohomology, corrected reprint of 1997 English ed., Springer Monogr. Math., Springer, Berlin, 2002.
[59] S. S. Shatz, Cohomology of artinian group schemes over local fields, Ann. of Math. (2) 79 (1964), 411-449. · Zbl 0152.19302 · doi:10.2307/1970403
[60] N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math. 65 (1988), no. 2, 121-154. · Zbl 0636.18006
[61] T. Suzuki, Duality for local fields and sheaves on the category of fields, preprint, arXiv:1310.4941v5 [math.NT].
[62] T. Suzuki and M. Yoshida, “A refinement of the local class field theory of Serre and Hazewinkel” in Algebraic Number Theory and Related Topics 2010, RIMS Kôkyûroku Bessatsu B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, 163-191. · Zbl 1282.11156
[63] R. G. Swan, “Néron-Popescu desingularization” in Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom. 2, Int. Press, Cambridge, MA, 1998, 135-192. · Zbl 0954.13003
[64] J. Tate, \(WC\)-groups over \(p\)-adic fields, Séminaire Bourbaki (1957/1958), no. 156, Soc. Math. France, Paris, 1958. · Zbl 0091.33701
[65] M. Temkin, Relative Riemann-Zariski spaces, Israel J. Math. 185 (2011), no. 1, 1-42. · Zbl 1273.14007 · doi:10.1007/s11856-011-0099-0
[66] R. W. Thomason and T. Trobaugh, “Higher algebraic \(K\)-theory of schemes and of derived categories” in The Grothendieck Festschrift, Vol. III, Progr. Math. 88, Birkhäuser Boston, Boston, 1990, 247-435. · Zbl 0731.14001
[67] A. Werner, On Grothendieck’s pairing of component groups in the semistable reduction case, J. Reine Angew. Math. 486 (1997), 205-215.
[68] X. Xarles, The scheme of connected components of the Néron model of an algebraic torus, J. Reine Angew. Math. 437 (1993), 167-179. · Zbl 0764.14009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.