×

Local flat duality of abelian varieties. (English) Zbl 0358.14021

Let \(K=k((t))\) be a field of formal power series with coefficients in a perfect field \(k\) of characteristic \(p\neq0\). Let \(A\) be an abelian scheme defined over the ring of integers \(R\) in \(K\) with the dual abelian scheme defined over the ring of integers \(R\) in \(K\) with the dual abelian scheme \(\hat A\) The main result of the paper states that there exists a non-degenerate pairing, \(H^1(\bar K, a\otimes_R\bar K)\times\pi_1(\bar A)\to\mathbb Q/\mathbb Z\), which is a perfect duality of topological \(G\)-modules, \(G\) being the Galois group of \(k\). Here \(\bar K\) denotes the maximal unramified extension of \(K\) with the ring of integers \(\bar R\), and \(\pi_1(\bar A)\) is the fundamental group (in the sense of Serre) of the proalgebraic group associated to \(\bar A=A\otimes_R\bar R\). The theorem generalizes - in the equicharacteristic case - the theorem of Ogg and Šafarevič [cf. I. R. Shafarevich, Transl., Ser. 2, Am. Math. Soc. 37, 85–114 (1964); translation from Tr. Mat. Inst. Steklov. 64, 316–346 (1961; Zbl 0142.18401)] to the \(p\)-primary components of the groups in question. In order to obtain such a pairing, the author first proves a duality theorem in flat cohomology for finite flat commutative group schemes over \(R\), using some exact sequences recently discovered by M. Artin and J. Milne [Invent. Math. 35, 111–129 (1976; Zbl 0342.14007)], and then reads off the result from the sequence of multiplication by \(p^n\) on \(A\).
Reviewer: Michael Bester

MSC:

14K05 Algebraic theory of abelian varieties
14F25 Classical real and complex (co)homology in algebraic geometry
14F35 Homotopy theory and fundamental groups in algebraic geometry

References:

[1] Artin, M., Grothendieck, A., Verdier, J.: Séminaire de géometrie algébrique. Lecture Notes in Mathematics 269, 270, 305. Berlin, Heidelberg, New York: Springer 1972, 1973
[2] Artin, M., Milne, J.: Duality in the flat cohomology of curves. Inventiones Math.,35, 111-129 (1976) · Zbl 0342.14007 · doi:10.1007/BF01390135
[3] Demazure, M., Gabriel, P.: Groupes algébriques. Paris: Masson and Amsterdam: North-Holland 1970
[4] Demazure, M., Grothendieck, A., et al.: Schémas en groupes. I. Lecture Notes in Mathematics 151. Berlin, Heidelberg, New York: Springer 1970 · Zbl 0209.24201
[5] Grothendieck, A.: Le groupe de Brauer. III. Dix exposés sur la cohomologie des schémas. Amsterdam: North-Holland 1968
[6] Hazewinkel, M.: Corps de classes local. In: Appendix to groupes algebriques (Eds. M. Demazure, P. Gabriel). Paris: Masson 1970
[7] Mazur, B., Roberts, L.: Local Euler characteristics. Inventiones Math.9, 201-234 (1970) · Zbl 0191.19202 · doi:10.1007/BF01404325
[8] Messing, W.: The crystals associated to the Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Mathematics 264. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0243.14013
[9] Milne, J.: Duality in the flat cohomology of a surface. Ann. Sc. ENS,9, 171-202 (1976) · Zbl 0334.14010
[10] Milne, J.: Weil-Châtelet groups over local fields. Ann. Sc. ENS, t.3, 273-284 (1970) · Zbl 0212.53201
[11] Mumford, D.: Abelian varieties. Lectures in Tata Institute, Bombay 1968
[12] Ogg, A.P.: Cohomology of abelian varieties over function fields. Ann. of Math.76, 185-212 (1962) · Zbl 0121.38002 · doi:10.2307/1970272
[13] Oort, F.: Dieudonné modules of finite local group schemes. Indag. Math.36, 284-292 (1974) · Zbl 0281.14019
[14] Oort, F.: Commutative group schemes. Lecture Notes in Mathematics 15. Berlin, Heidelberg, New York: Springer 1969 · Zbl 0216.05603
[15] Oort, F.: Embeddings of finite group schemes into abelian schemes. Advanced Science Seminar in Algebraic Geometry, Bowdoin College, 1967
[16] ?afarevi?, I.R.: Principal homogeneous spaces defined over a function field. Amer. Math. Soc. Transl., Series 2,36, 85-114 (1962)
[17] Serre, J.P.: Sur les corps locaux à corps residual algébriquement. Clos. Bull. Math. Soc. France89, 105-154 (1961) · Zbl 0166.31103
[18] Serre, J.P.: Groupes algébriques et corps de classes. Paris: Hermann 1959 · Zbl 0097.35604
[19] Serre, J.P.: Groupes proalgébriques. Publ. Math. IHES, No. 7, Paris 1960
[20] Tate, J.: W.C.-groups overp-adic fields. Sem. Bourbaki, exposé 156, 1957-1958
[21] Vvedenskii, O.N.: Duality on elliptic curves over local fields. I. Amer. Math. Soc. Transl., Series 2,63, 195-216 (1961)
[22] Vvedenskii, O.N.: Duality on elliptic curves over local fields. II. Amer. Math. Soc. Transl., Series 2,71, 135-167 (1968)
[23] Vvedenskii, O.N.: On local ?class fields? of elliptic curves, Mathematics of the USSR (Izvestija), No. 7, 20-84 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.