×

Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: a review. (English) Zbl 1467.82001

Summary: Fractal calculus generalizes ordinary calculus, offering a way to differentiate otherwise non-differentiable domains and phenomena. This paper discusses the equilibrium and non-equilibrium statistical mechanics involving fractal structure, as well as fractal temperature in the partition function.

MSC:

82-02 Research exposition (monographs, survey articles) pertaining to statistical mechanics
26A33 Fractional derivatives and integrals
82B05 Classical equilibrium statistical mechanics (general)
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] Frankel, T., The Geometry of Physics: An Introduction (Cambridge Univ. Press, 2011). · Zbl 1250.58001
[2] Mandelbrot, B. B., The Fractal Geometry of Nature, Vol. 173 (W.H. Freeman, 1983).
[3] Blackledge, J. M., Evans, A. K. and Turner, M. J., Fractal Geometry: Mathematical Methods, Algorithms, Applications (Elsevier, 2002). · Zbl 0996.00016
[4] Pesin, Y. B., Dimension Theory in Dynamical Systems: Contemporary Views and Applications (Univ. Chicago Press, 2008). · Zbl 0895.58033
[5] Peters, E. E., Fractal Market Analysis: Applying Chaos Theory to Investment and Economics, Vol. 24 (John Wiley & Sons, 1994).
[6] Dewey, T. G., Fractals in Molecular Biophysics (Oxford Univ. Press, 1998). · Zbl 0929.92006
[7] Pietronero, L. and Tosatti, E., Fractals in Physics (Elsevier, 2012). · Zbl 0652.58001
[8] Bercioux, D. and Iñiguez, A., Nat. Phys.15, 111 (2019).
[9] Deppman, A. and Megías, E., Physics1, 103 (2019).
[10] Calcagni, G., Eur. Phys. J. C76, 181 (2016).
[11] Calcagni, G., Phys. Lett. B697, 251 (2011).
[12] Fernández-Martínez, M. and Sánchez-Granero, M. A., Topol. Appl.163, 93 (2014). · Zbl 1296.37038
[13] Family, F. and Vicsek, T., Dynamics of Fractal Surfaces (World Scientific, 1991). · Zbl 0866.28009
[14] Massopust, P. R., Fractal Functions, Fractal Surfaces, and Wavelets (Academic Press, 2016). · Zbl 1343.28003
[15] Ieva, A. D. (ed.), The Fractal Geometry of the Brain (Springer, 2016).
[16] Losa, G. A., Merlini, D., Nonnenmacher, T. F. and Weibel, E. R., Fractals in Biology and Medicine (Birkhäuser, 2005). · Zbl 0997.00037
[17] Kaandorp, J. A. and Prusinkiewicz, P., Fractal Modelling: Growth and Form in Biology (Springer, 1994). · Zbl 0796.92001
[18] Schroeder, M., Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Courier Corporation, 2009).
[19] Bandt, C., Graf, S. and Zähle, M. (eds.), Fractal Geometry and Stochastics (Birkhäuser, 1995). · Zbl 0829.00021
[20] Edgar, G., Measure, Topology, and Fractal Geometry (Springer Science & Business Media, 2007).
[21] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, 2004).
[22] Falconer, K., Techniques in Fractal Geometry (John Wiley and Sons, 1997). · Zbl 0869.28003
[23] Samayoa, D., Ochoa Ontiveros, L. A., Damián Adame, L., Reyes de Luna, E., Álvarez Romero, L. and Romero-Paredes, G., Rev. Mex. Fís.66, 283 (2020).
[24] Lapidus, M. L. and Van Frankenhuijsen, M., Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings (Springer, 2012). · Zbl 1261.28011
[25] Strichartz, R. S., Differential Equations on Fractals: A Tutorial (Princeton Univ. Press, 2006). · Zbl 1190.35001
[26] Czachor, M., Acta Phys. Pol. B50, 813 (2019). · Zbl 07913270
[27] Uchaikin, V. V. and Sibatov, R. T., Fractional Kinetics in Space: Anomalous Transport Models (World Scientific, 2017). · Zbl 1387.85001
[28] Barlow, M. T. and Perkins, E. A., Probab. Theory Rel. Fields79, 543 (1988). · Zbl 0635.60090
[29] Kigami, J., Analysis on Fractals (Cambridge Univ. Press, 2001). · Zbl 0998.28004
[30] Freiberg, U. and Zahle, M., Potential Anal.16, 265 (2002). · Zbl 1055.28002
[31] Zubair, M., Mughal, M. J. and Naqvi, Q. A., Electromagnetic Fields and Waves in Fractional Dimensional Space (Springer, 2012). · Zbl 1244.78001
[32] Goldfain, E., Quantum Matter3, 256 (2014).
[33] Nigmatullin, R. R. and Baleanu, D., Relationships between 1D and space fractals and fractional integrals and their applications in physics, in Applications in Physics, Part A, pp. 183-220.
[34] Nigmatullin, R. R., Zhang, W. and Gubaidullin, I., Fract. Calc. Appl. Anal.20, 1263 (2017). · Zbl 1374.28014
[35] Tarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, 2011).
[36] Stillinger, F. H., J. Math. Phys.18, 1224 (1977). · Zbl 0359.54023
[37] Balankin, A. S., Eur. Phys. J. B88, 1 (2015).
[38] Kempfle, S., Schäfer, I. and Beyer, H., Nonlinear Dyn.29, 99 (2002). · Zbl 1026.47010
[39] Nottale, L., Fractals in the quantum theory of spacetime, in Mathematics of Complexity and Dynamical Systems, ed. Meyers, R. (Springer, 2012).
[40] Bohner, M. and Peterson, A. C. (eds.), Advances in Dynamic Equations on Time Scales (Springer, 2002).
[41] Wu, J. and Wang, C., Fractals28, 2050010 (2020). · Zbl 1434.28009
[42] Nottale, L., Fractal Space-time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, 1993). · Zbl 0789.58003
[43] Vrobel, S., Fractal Time: Why a Watched Kettle Never Boils, Vol. 14 (World Scientific, 2011).
[44] Welch, K., A Fractal Topology of Time: Deepening into Timelessness, 2nd edn. (Fox Finding Press, 2020).
[45] Shlesinger, M. F., Ann. Rev. Phys. Chem.39, 269 (1988).
[46] Kröger, H., Phys. Rep.323, 81 (2000).
[47] Schulman, L. S., Techniques and Applications of Path Integration (Courier Corporation, 2012).
[48] Parvate, A. and Gangal, A. D., Fractals17, 53 (2009). · Zbl 1173.28005
[49] Parvate, A. and Gangal, A. D., Fractals19, 271 (2011). · Zbl 1252.28005
[50] Satin, S., Parvate, A. and Gangal, A. D., Chaos Solitons Fractals52, 30 (2013). · Zbl 1323.35179
[51] Parvate, A., Satin, S. and Gangal, A. D., Fractals19, 15 (2011). · Zbl 1217.28014
[52] Golmankhaneh, A. K., Fernandez, A., Golmankhaneh, A. K. and Baleanu, D., Entropy20, 1 (2018).
[53] Golmankhaneh, A. K., Turk. J. Phys.41, 418 (2017).
[54] Golmankhaneh, A. K. and Cattani, C., Fractal Fract.3, 41 (2019).
[55] Satin, S. and Gangal, A. D., Chaos Solitons Fractals127, 17 (2019). · Zbl 1448.60101
[56] Satin, S. and Gangal, A. D., Fractals24, 1650028 (2016). · Zbl 1354.28008
[57] Golmankhaneh, A. K., Ain Shams Eng. J.9, 2499 (2018).
[58] Golmankhaneh, A. K., Golmankhaneh, A. K. and Baleanu, D., Int. J. Theor. Phys.54, 1275 (2015). · Zbl 1328.81119
[59] Golmankhaneh, A. K. and Fernandez, A., Fractal Fract.2, 30 (2018).
[60] Golmankhaneh, A. K. and Baleanu, D., Open Phys.14, 542 (2016).
[61] Golmankhaneh, A. K. and Baleanu, D., J. Mod. Opt.63, 1364 (2016).
[62] Remón, L., Garcia-Delpech, S., Udaondo, P., Ferrando, V., Monsoriu, J. A. and Furlan, W. D., PLoS One13, 0200197 (2018).
[63] Remón, L., Furlan, W. D. and Monsoriu, J. A., Opt. Pura Apl.48, 1 (2015).
[64] Golmankhaneh, A. K. and Balankin, A. S., Phys. Lett. A382, 960 (2018). · Zbl 1383.76439
[65] Balankin, A. S., Golmankhaneh, A. K., Patiño-Ortiz, J. and Patiño-Ortiz, M., Phys. Lett. A382, 1534 (2018). · Zbl 1396.28008
[66] Golmankhaneh, A. K. and Tunç, C., Stochastics Int. J. Probab. Stochastic Process.92, 1244 (2020). · Zbl 1490.60158
[67] Golmankhaneh, A. K. and Fernandez, A., Fractal Fract.3, 31 (2019).
[68] Bodri, L., Theor. Appl. Climatol.49, 53 (1994).
[69] Golmankhaneh, A. K., Fractal Fract.3, 20 (2019).
[70] El-Nabulsi, R. A., Few-Body Syst.61, 25 (2020).
[71] El-Nabulsi, R. A., Few-Body Syst.61, 10 (2020).
[72] Golmankhaneh, A. K., Fractal Fract.3, 11 (2019).
[73] R. DiMartino and W. Urbina, arXiv:1403.6554.
[74] Serpa, C. and Buescu, J., Chaos Solitons Fractals75, 76 (2015). · Zbl 1352.41001
[75] Iomin, A. and Sandev, T., Fractal Fract.4, 52 (2020).
[76] Pathria, R. K. and Beale, P. D., Statistical Mechanics, 3rd edn. (Academic Press, 2011). · Zbl 1209.82001
[77] Kittel, C., Introduction to Solid State Physics, 8th edn. (Wiley, 2004). · Zbl 0052.45506
[78] Bodrova, A. S.et al., Sci. Rep.6, 30520 (2016).
[79] Bodrova, A. S., Chechkin, A. V., Cherstvy, A. G. and Metzler, R., New J. Phys.17, 063038 (2015).
[80] Bodrova, A. S., Dubey, A. K., Puri, S. and Brilliantov, N. V., Phys. Rev. Lett.109, 178001 (2012).
[81] Burov, S. and Barkai, E., Phys. Rev. E78, 031112 (2008).
[82] Godec, A., Chechkin, A. V., Barkai, E., Kantz, H. and Metzler, R., J. Phys. A47, 492002 (2014). · Zbl 1305.60074
[83] Goychuk, I., Adv. Chem. Phys.150, 187 (2012).
[84] Muniandy, S. V. and Lim, S. C., Phys. Rev. E63, 046104 (2001).
[85] Thiel, F. and Sokolov, I. M., Phys. Rev. E89, 012115 (2014).
[86] Safdari, H., Cherstvy, A. G., Chechkin, A. V., Thiel, F., Sokolov, I. M. and Metzler, R., J. Phys. A48, 375002 (2015). · Zbl 1329.82096
[87] Lim, S. C. and Muniandy, S. V., Phys. Rev. E66, 021114 (2002).
[88] Kursawe, J., Schulz, J. H. P. and Metzler, R., Phys. Rev. E88, 062124 (2013).
[89] Sen, P. N., Concepts Magn. Reson. A23, 1 (2004).
[90] Molini, A., Talkner, P., Katul, G. G. and Porporato, A., Physica A390, 1841 (2011). · Zbl 1225.60135
[91] Lanoiselée, Y. and Grebenkov, D. S., J. Phys. A, Math. Theor.51, 145602 (2018). · Zbl 1391.92012
[92] Xiong, S. J., Xing, D. Y., Evangelou, S. N. and Sheng, D. N., Phys. Lett. A311, 426 (2003).
[93] Liang, Y., Sandev, T. and Lenzi, E. K., Phys. Rev. E101, 042119 (2020).
[94] dos Santos, M. A. F., Fractal Fract.4, 28 (2020).
[95] dos Santos, M. A. F., Indian J. Phys.94, 1123 (2020).
[96] dos Santos, M. A. F., Chaos Soliton. Fract.124, 86 (2019). · Zbl 1448.60193
[97] Sibatov, R. T. and Sun, H., Fractal Fract.4, 42 (2020).
[98] Uchaikin, V. V. and Sibatov, R. T., Commun. Nonlinear Sci. Numer. Simul.13, 715 (2008). · Zbl 1221.82141
[99] Uchaikin, V. V. and Sibatov, R. T., Tech. Phys. Lett.30, 316 (2004).
[100] Provata, A., Physica A, Stat. Mech. Appl.381, 148 (2007).
[101] Deppman, A., Phys. Rev. D93, 054001 (2016).
[102] Iliasov, A. A., Katsnelson, M. I. and Yuan, S., Phys. Rev. B101, 045413 (2020).
[103] Yang, Z., Lustig, E., Lumer, Y. and Segev, M., Light, Sci. Appl.9, 1 (2020).
[104] Petreska, I., de Castro, A. S., Sandev, T. and Lenzi, E. K., Phys. Lett. A384, 126866 (2020). · Zbl 1448.81311
[105] Sen, A. and Perelman, C. C., Eur. Phys. J. B93, 1 (2020).
[106] Tanese, D., Gurevich, E., Baboux, F., Jacqmin, T., Lemaître, A., Galopin, E., Sagnes, I., Amo, A., Bloch, J. and Akkermans, E., Phys. Rev. Lett.112, 146404 (2014).
[107] K. J. Vinoy, Fractal shaped antenna elements for wide-and multi-band wireless applications. Ph.D. Thesis, submitted to The Pennsylvania State University, USA (2002).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.