×

Transport in dynamical astronomy and multibody problems. (English) Zbl 1085.70012

Summary: We combine the techniques of almost invariant sets (using tree structured box elimination and graph partitioning algorithms) with invariant manifold and lobe dynamics techniques. The result is a new computational technique for computing key dynamical features, including almost invariant sets, resonance regions as well as transport rates and bottlenecks between regions in dynamical systems. This methodology can be applied to a variety of multibody problems, including those in molecular modeling, chemical reaction rates and dynamical astronomy. In this paper we focus on problems in dynamical astronomy to illustrate the power of the combination of these different numerical tools and their applicability. In particular, we compute transport rates between two resonance regions for the three-body system consisting of the Sun, Jupiter and a third body (such as an asteroid). These resonance regions are appropriate for certain comets and asteroids.

MSC:

70F10 \(n\)-body problems
70F15 Celestial mechanics
70-08 Computational methods for problems pertaining to mechanics of particles and systems
37N05 Dynamical systems in classical and celestial mechanics

Software:

GAIO; Scotch
Full Text: DOI

References:

[1] DOI: 10.1073/pnas.052005999 · doi:10.1073/pnas.052005999
[2] DOI: 10.1086/118359 · doi:10.1086/118359
[3] DOI: 10.1006/icar.1995.1182 · doi:10.1006/icar.1995.1182
[4] Carusi A., Long Term Evolution of Short Period Comets (1985)
[5] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[6] DOI: 10.1137/0116060 · Zbl 0197.21105 · doi:10.1137/0116060
[7] DOI: 10.5194/npg-8-69-2001 · doi:10.5194/npg-8-69-2001
[8] DOI: 10.1063/1.460116 · doi:10.1063/1.460116
[9] DOI: 10.1063/1.460065 · doi:10.1063/1.460065
[10] DOI: 10.1063/1.462516 · doi:10.1063/1.462516
[11] DOI: 10.1007/s002110050240 · Zbl 0883.65060 · doi:10.1007/s002110050240
[12] DOI: 10.1063/1.166223 · Zbl 0938.37056 · doi:10.1063/1.166223
[13] DOI: 10.1137/S0036142996313002 · Zbl 0916.58021 · doi:10.1137/S0036142996313002
[14] DOI: 10.1142/9789812792617_0204 · doi:10.1142/9789812792617_0204
[15] DOI: 10.1007/978-3-642-56589-2_7 · doi:10.1007/978-3-642-56589-2_7
[16] DOI: 10.1016/S1874-575X(02)80026-1 · doi:10.1016/S1874-575X(02)80026-1
[17] M. Dellnitz and R. Preis, Proc. SNSC’01, LNCS 2630, ed. F. Winkler (Springer, 2003) pp. 183–209.
[18] DOI: 10.1016/S0020-0190(02)00393-9 · Zbl 1173.68861 · doi:10.1016/S0020-0190(02)00393-9
[19] Easton R. W., Geometric Methods for Discrete Dynamical Systems (1998)
[20] DOI: 10.1137/S106482750238911X · Zbl 1042.37063 · doi:10.1137/S106482750238911X
[21] DOI: 10.1063/1.459840 · doi:10.1063/1.459840
[22] DOI: 10.1126/science.271.5254.1387 · doi:10.1126/science.271.5254.1387
[23] Goldreich P., Nature 240 pp 643–
[24] Gómez G., Adv. Astronaut. Sci. 109 pp 3–
[25] DOI: 10.1147/rd.411.0171 · doi:10.1147/rd.411.0171
[26] DOI: 10.1063/1.1477449 · Zbl 1185.76161 · doi:10.1063/1.1477449
[27] DOI: 10.1063/1.470162 · doi:10.1063/1.470162
[28] Hammes-Schiffer S., Chem. Phys. Chem. 3 pp 33–
[29] DOI: 10.1007/BF01228946 · Zbl 0488.70011 · doi:10.1007/BF01228946
[30] Hendrickson B., Proc. Supercomputing ’95 (1995)
[31] DOI: 10.1006/jcph.1993.1002 · Zbl 0768.65025 · doi:10.1006/jcph.1993.1002
[32] Hunt F. Y., National Institude of Standards and Technology, NISTIR 4980
[33] DOI: 10.1103/PhysRevLett.84.610 · doi:10.1103/PhysRevLett.84.610
[34] DOI: 10.1103/PhysRevLett.89.011101 · doi:10.1103/PhysRevLett.89.011101
[35] Johnson M. R., Computers and Intractability – A Guide to the Theory of NP-Completeness (1979) · Zbl 0411.68039
[36] DOI: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W · Zbl 0969.70004 · doi:10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
[37] DOI: 10.1137/S1064827595287997 · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[38] Kernighan B. W., The Bell Syst. Tech. J. pp 291–
[39] DOI: 10.1038/nature01379 · doi:10.1038/nature01379
[40] DOI: 10.1063/1.166509 · Zbl 0987.70010 · doi:10.1063/1.166509
[41] DOI: 10.1023/A:1013398801813 · Zbl 1013.70011 · doi:10.1023/A:1013398801813
[42] DOI: 10.1023/A:1013359120468 · Zbl 0995.70009 · doi:10.1023/A:1013359120468
[43] DOI: 10.1090/conm/292/04919 · doi:10.1090/conm/292/04919
[44] DOI: 10.1196/annals.1311.002 · doi:10.1196/annals.1311.002
[45] Kostelich E. J., Physica 93 pp 210–
[46] DOI: 10.1038/338237a0 · doi:10.1038/338237a0
[47] DOI: 10.1086/186780 · doi:10.1086/186780
[48] DOI: 10.1007/s00205-002-0212-y · Zbl 1055.74041 · doi:10.1007/s00205-002-0212-y
[49] DOI: 10.1002/nme.958 · Zbl 1060.70500 · doi:10.1002/nme.958
[50] DOI: 10.1007/978-1-4757-4257-2 · doi:10.1007/978-1-4757-4257-2
[51] MacKay R. S., Physica 13 pp 55–
[52] MacKay R. S., Physica 27 pp 1–
[53] DOI: 10.1007/s003329900057 · Zbl 0993.37034 · doi:10.1007/s003329900057
[54] DOI: 10.1086/117802 · doi:10.1086/117802
[55] R. Malhotra, M. Duncan and H. Levison, Protostars and Planets IV, eds. V. Mannings, A. P. Boss and S. S. Russell (Univ. of Arizona Press, Tucson, 2000) pp. 1231–1254.
[56] DOI: 10.1017/S096249290100006X · Zbl 1123.37327 · doi:10.1017/S096249290100006X
[57] DOI: 10.1063/1.456914 · doi:10.1063/1.456914
[58] Meiss J. D., Physica 20 pp 387–
[59] DOI: 10.1103/RevModPhys.64.795 · Zbl 1160.37302 · doi:10.1103/RevModPhys.64.795
[60] DOI: 10.1006/icar.1999.6317 · doi:10.1006/icar.1999.6317
[61] DOI: 10.1016/S0167-8191(00)00049-1 · Zbl 0948.68131 · doi:10.1016/S0167-8191(00)00049-1
[62] DOI: 10.1111/j.1945-5100.2000.tb01518.x · doi:10.1111/j.1945-5100.2000.tb01518.x
[63] DOI: 10.1038/35071000 · doi:10.1038/35071000
[64] DOI: 10.1007/BF00048435 · Zbl 0881.58055 · doi:10.1007/BF00048435
[65] DOI: 10.1063/1.166236 · Zbl 1002.34029 · doi:10.1063/1.166236
[66] Ozorio de Almeida A. M., Physica 46 pp 265–
[67] Padberg K., Technical Report (2004)
[68] DOI: 10.1007/978-1-4612-3486-9 · doi:10.1007/978-1-4612-3486-9
[69] Pellegrini F., Technical Report 1137-96 (1996)
[70] Perry A. D., Physica 71 pp 102–
[71] DOI: 10.1175/1520-0485(1999)029<1649:GOCSMI>2.0.CO;2 · doi:10.1175/1520-0485(1999)029<1649:GOCSMI>2.0.CO;2
[72] Ponnusamy R., Sci. Program. 3 pp 73–
[73] DOI: 10.1017/S0022112090000167 · Zbl 0698.76028 · doi:10.1017/S0022112090000167
[74] DOI: 10.1007/BF00375090 · Zbl 0755.58070 · doi:10.1007/BF00375090
[75] Rom-Kedar V., Physica 51 pp 248–
[76] DOI: 10.1007/978-94-011-4673-9_73 · doi:10.1007/978-94-011-4673-9_73
[77] Rowley C. W., Proc. CDC 40 pp 1521–
[78] DOI: 10.1006/icar.2002.6908 · doi:10.1006/icar.2002.6908
[79] D. J. Scheeres, D. D. Durda and P. E. Geissler, Asteroids III, eds. W. M. Bottk (University of Arizona, Tuscon, 2002) pp. 527–544.
[80] DOI: 10.1063/1.166277 · Zbl 0933.37035 · doi:10.1063/1.166277
[81] Szebehely V., Theory of Orbits (1967) · Zbl 1372.70004
[82] Tancredi G., Astron. Astrophys. 239 pp 375–
[83] Tancredi G., Astron. Astrophys. 299 pp 288–
[84] DOI: 10.1086/379554 · doi:10.1086/379554
[85] DOI: 10.1038/345049a0 · doi:10.1038/345049a0
[86] DOI: 10.1088/0951-7715/15/4/301 · Zbl 1055.37063 · doi:10.1088/0951-7715/15/4/301
[87] G. B. Valsecchi, Periodic Comets, eds. J. A. Fernández and H. Rickman (Univ. de la Republica, Montevideo, Uruguay, 1992) pp. 143–157.
[88] DOI: 10.1038/416711a · doi:10.1038/416711a
[89] DOI: 10.1007/978-1-4757-3896-4 · doi:10.1007/978-1-4757-3896-4
[90] DOI: 10.1086/112778 · doi:10.1086/112778
[91] DOI: 10.1142/S0218127491000440 · Zbl 0874.58053 · doi:10.1142/S0218127491000440
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.