×

Limit theorems for long-memory flows on Wiener chaos. (English) Zbl 1466.60072

Summary: We consider a long-memory stationary process, defined not through a moving average type structure, but by a flow generated by a measure-preserving transform and by a multiple Wiener-Itô integral. The flow is described using a notion of mixing for infinite-measure spaces introduced by K. Krickeberg [in: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Vol. II, Part 2: Contributions to probability theory. Berkeley-Los Angeles: University of California Press. 431–446 (1967; Zbl 0211.48503)]. Depending on the interplay between the spreading rate of the flow and the order of the multiple integral, one can recover known central or non-central limit theorems, and also obtain joint convergence of multiple integrals of different orders.

MSC:

60G10 Stationary stochastic processes
28D05 Measure-preserving transformations
60F05 Central limit and other weak theorems
60G15 Gaussian processes
60G18 Self-similar stochastic processes

Citations:

Zbl 0211.48503

Software:

longmemo

References:

[1] Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Providence, RI: Amer. Math. Soc.
[2] Arcones, M.A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242-2274. · Zbl 0839.60024 · doi:10.1214/aop/1176988503
[3] Bai, S., Owada, T. and Wang, Y. (2019). A functional non-central limit theorem for multiple-stable processes with long-range dependence. Preprint. Available at arXiv:1902.00628. · Zbl 1455.60050
[4] Bai, S. and Taqqu, M.S. (2013). Multivariate limit theorems in the context of long-range dependence. J. Time Series Anal. 34 717-743. · Zbl 1291.62160 · doi:10.1111/jtsa.12046
[5] Bai, S. and Taqqu, M.S. (2016). The universality of homogeneous polynomial forms and critical limits. J. Theoret. Probab. 29 1710-1727. · Zbl 1357.60021 · doi:10.1007/s10959-015-0613-0
[6] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-Memory Processes. Heidelberg: Springer. Probabilistic properties and statistical methods. · Zbl 1282.62187
[7] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge: Cambridge Univ. Press.
[8] Bogachev, V.I. (2007). Measure Theory. Vol. I, II. Berlin: Springer. · Zbl 1120.28001
[9] Brockwell, P. and Marquardt, T. (2005). Lévy-driven and fractionally integrated ARMA processes with continuous time parameter. Statist. Sinica 15 477-494. · Zbl 1070.62068
[10] Dobrushin, R.L. (1979). Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7 1-28. · Zbl 0392.60039 · doi:10.1214/aop/1176995145
[11] Dobrushin, R.L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. · Zbl 0397.60034 · doi:10.1007/BF00535673
[12] Durrett, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical and Probabilistic Mathematics 31. Cambridge: Cambridge Univ. Press.
[13] Eigen, S., Hajian, A., Ito, Y. and Prasad, V. (2014). Weakly Wandering Sequences in Ergodic Theory. Springer Monographs in Mathematics. Tokyo: Springer. · Zbl 1328.37006
[14] Giraitis, L., Koul, H.L. and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes. London: Imperial College Press. · Zbl 1279.62016
[15] Gouëzel, S. (2011). Correlation asymptotics from large deviations in dynamical systems with infinite measure. Colloq. Math. 125 193-212. · Zbl 1246.37017
[16] Granger, C.W.J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Series Anal. 1 15-29. · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[17] Hajian, A.B. and Kakutani, S. (1964). Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc. 110 136-151. · Zbl 0122.29804 · doi:10.1090/S0002-9947-1964-0154961-1
[18] Hopf, E. (1937). Ergodentheorie. Ergebnisse der Mathematik und Ihrer Grenzgebiete. Berlin: Springer. · Zbl 0017.28301
[19] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge: Cambridge Univ. Press. · Zbl 0887.60009
[20] Jung, P., Owada, T. and Samorodnitsky, G. (2017). Functional central limit theorem for a class of negatively dependent heavy-tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. 45 2087-2130. · Zbl 1381.60081 · doi:10.1214/16-AOP1107
[21] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). New York: Springer. · Zbl 0996.60001
[22] Kesseböhmer, M. and Slassi, M. (2007). Limit laws for distorted critical return time processes in infinite ergodic theory. Stoch. Dyn. 7 103-121. · Zbl 1114.37007 · doi:10.1142/S0219493707001962
[23] Krickeberg, K. (1967). Strong mixing properties of Markov chains with infinite invariant measure. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 431-446. Berkeley, Calif.: Univ. California Press. · Zbl 0211.48503
[24] Lacaux, C. and Samorodnitsky, G. (2016). Time-changed extremal process as a random sup measure. Bernoulli 22 1979-2000. · Zbl 1346.60070 · doi:10.3150/15-BEJ717
[25] Major, P. (1981). Multiple Wiener-Itô Integrals. Lecture Notes in Math. 849. Berlin: Springer. With applications to limit theorems. · Zbl 0451.60002
[26] Melbourne, I. and Terhesiu, D. (2012). Operator renewal theory and mixing rates for dynamical systems with infinite measure. Invent. Math. 189 61-110. · Zbl 1263.37011 · doi:10.1007/s00222-011-0361-4
[27] Moschovakis, Y.N. (2009). Descriptive Set Theory, 2nd ed. Mathematical Surveys and Monographs 155. Providence, RI: Amer. Math. Soc. · Zbl 1172.03026
[28] Nourdin, I., Nualart, D. and Peccati, G. (2016). Strong asymptotic independence on Wiener chaos. Proc. Amer. Math. Soc. 144 875-886. · Zbl 1339.60017 · doi:10.1090/proc12769
[29] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus. Cambridge Tracts in Mathematics 192. Cambridge: Cambridge Univ. Press. From Stein’s method to universality. · Zbl 1266.60001
[30] Nourdin, I. and Peccati, G. (2015). The optimal fourth moment theorem. Proc. Amer. Math. Soc. 143 3123-3133. · Zbl 1317.60021 · doi:10.1090/S0002-9939-2015-12417-3
[31] Nourdin, I. and Rosiński, J. (2014). Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws. Ann. Probab. 42 497-526. · Zbl 1301.60026 · doi:10.1214/12-AOP826
[32] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[33] Orey, S. (1961). Strong ratio limit property. Bull. Amer. Math. Soc. 67 571-574. · Zbl 0109.11801 · doi:10.1090/S0002-9904-1961-10694-0
[34] Owada, T. (2016). Limit theory for the sample autocovariance for heavy-tailed stationary infinitely divisible processes generated by conservative flows. J. Theoret. Probab. 29 63-95. · Zbl 1336.60047 · doi:10.1007/s10959-014-0565-9
[35] Owada, T. and Samorodnitsky, G. (2015). Functional central limit theorem for heavy tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab. 43 240-285. · Zbl 1320.60090 · doi:10.1214/13-AOP899
[36] Owada, T. and Samorodnitsky, G. (2015). Maxima of long memory stationary symmetric \(\alpha \)-stable processes, and self-similar processes with stationary max-increments. Bernoulli 21 1575-1599. · Zbl 1325.60040 · doi:10.3150/14-BEJ614
[37] Peccati, G. and Taqqu, M.S. (2011). Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi & Springer Series 1. Milan: Springer; Milan: Bocconi Univ. Press. A survey with computer implementation, Supplementary material available online. · Zbl 1231.60003
[38] Peccati, G. and Tudor, C.A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247-262. Berlin: Springer. · Zbl 1063.60027
[39] Pipiras, V. and Taqqu, M.S. (2010). Regularization and integral representations of Hermite processes. Statist. Probab. Lett. 80 2014-2023. · Zbl 1216.60029 · doi:10.1016/j.spl.2010.09.008
[40] Pipiras, V. and Taqqu, M.S. (2017). Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics, 45. Cambridge: Cambridge Univ. Press. · Zbl 1377.60005
[41] Rosenblatt, M. (1961). Independence and dependence. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II 431-443. Berkeley, Calif.: Univ. California Press. · Zbl 0105.11802
[42] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. New York-Auckland-Düsseldorf: McGraw-Hill. International Series in Pure and Applied Mathematics. · Zbl 0346.26002
[43] Samorodnitsky, G. (2016). Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering. Cham: Springer. · Zbl 1376.60007
[44] Samorodnitsky, G. and Wang, Y. (2019). Extremal theory for long range dependent infinitely divisible processes. Ann. Probab. 47 2529-2562. · Zbl 1439.60050 · doi:10.1214/18-AOP1318
[45] Sánchez de Naranjo, M.V. (1993). Non-central limit theorems for nonlinear functionals of \(k\) Gaussian fields. J. Multivariate Anal. 44 227-255. · Zbl 0770.60025
[46] Taqqu, M.S. (1974/75). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. · Zbl 0303.60033 · doi:10.1007/BF00532868
[47] Taqqu, M.S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83. · Zbl 0397.60028 · doi:10.1007/BF00535674
[48] Thaler, M. (2000). The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures. Studia Math. 143 103-119. · Zbl 0959.37008 · doi:10.4064/sm-143-2-103-119
[49] Zweimüller, R. (1998). Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 11 1263-1276. · Zbl 0922.58039
[50] Zweimüller, R. (2000). Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points. Ergodic Theory Dynam. Systems 20 1519-1549. · Zbl 0986.37008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.