×

Extremal theory for long range dependent infinitely divisible processes. (English) Zbl 1439.60050

Authors’ abstract: We prove limit theorems of an entirely new type for certain long memory regularly varying stationary infinitely divisible random processes. These theorems involve multiple phase transitions governed by how long the memory is. Apart from one regime, our results exhibit limits that are not among the classical extreme value distributions. Restricted to the one-dimensional case, the distributions we obtain interpolate, in the appropriate parameter range, the \(\alpha\)-Fréchet distribution and the skewed \(\alpha\)-stable distribution. In general, the limit is a new family of stationary and self-similar random sup-measures with parameters \(\alpha\in(0,\infty)\) and \(\beta\in(0,1)\), with representations based on intersections of independent \(\beta\)-stable regenerative sets. The tail of the limit random sup-measure on each interval with finite positive length is regularly varying with index \(-\alpha\). The intriguing structure of these random sup-measures is due to intersections of independent \(\beta\)-stable regenerative sets and the fact that the number of such sets intersecting simultaneously increases to infinity as \(\beta\) increases to one. The results in this paper extend substantially previous investigations where only \(\alpha\in(0,2)\) and \(\beta\in(0,1/2)\) have been considered.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60F17 Functional limit theorems; invariance principles
60G57 Random measures

References:

[1] Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat.35 502-516. · Zbl 0122.13503 · doi:10.1214/aoms/1177703551
[2] Bertoin, J. (1999a). Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math.1717 1-91. Springer, Berlin. · Zbl 0955.60046
[3] Bertoin, J. (1999b). Intersection of independent regenerative sets. Probab. Theory Related Fields114 97-121. · Zbl 0937.60043 · doi:10.1007/s004400050223
[4] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. · Zbl 0944.60003
[5] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications27. Cambridge Univ. Press, Cambridge, MA.
[6] de Haan, L. (1984). A spectral representation for max-stable processes. Ann. Probab.12 1194-1204. · Zbl 0597.60050 · doi:10.1214/aop/1176993148
[7] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York. · Zbl 1101.62002
[8] Doney, R. A. (1997). One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Related Fields107 451-465. · Zbl 0883.60022 · doi:10.1007/s004400050093
[9] Dwass, M. (1964). Extremal processes. Ann. Math. Stat.35 1718-1725. · Zbl 0171.38801 · doi:10.1214/aoms/1177700394
[10] Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society24(2) 180-190. Cambridge Univ. Press, Cambridge, MA. · JFM 54.0560.05 · doi:10.1017/S0305004100015681
[11] Fitzsimmons, P. J., Fristedt, B. and Maisonneuve, B. (1985). Intersections and limits of regenerative sets. Z. Wahrsch. Verw. Gebiete70 157-173. · Zbl 0548.60084 · doi:10.1007/BF02451426
[12] Giacomin, G. (2007). Random Polymer Models. Imperial College Press, London. · Zbl 1125.82001
[13] Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. of Math. (2) 44 423-453. · Zbl 0063.01643
[14] Hawkes, J. (1977). Intersections of Markov random sets. Z. Wahrsch. Verw. Gebiete37 243-251. · Zbl 0404.60077 · doi:10.1007/BF00537491
[15] Jung, P., Owada, T. and Samorodnitsky, G. (2017). Functional central limit theorem for a class of negatively dependent heavy-tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab.45 2087-2130. · Zbl 1381.60081 · doi:10.1214/16-AOP1107
[16] Kabluchko, Z. (2009). Spectral representations of sum- and max-stable processes. Extremes12 401-424. · Zbl 1224.60120 · doi:10.1007/s10687-009-0083-9
[17] Kabluchko, Z. and Stoev, S. (2016). Stochastic integral representations and classification of sum- and max-infinitely divisible processes. Bernoulli22 107-142. · Zbl 1339.60065 · doi:10.3150/14-BEJ624
[18] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin. · Zbl 1104.60001
[19] Lacaux, C. and Samorodnitsky, G. (2016). Time-changed extremal process as a random sup measure. Bernoulli22 1979-2000. · Zbl 1346.60070 · doi:10.3150/15-BEJ717
[20] Lamperti, J. (1964). On extreme order statistics. Ann. Math. Stat.35 1726-1737. · Zbl 0132.39502 · doi:10.1214/aoms/1177700395
[21] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics. Springer, New York. · Zbl 0518.60021
[22] Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemp. Math.50 263-273. Amer. Math. Soc., Providence, RI. · Zbl 0587.60057
[23] Mittal, Y. and Ylvisaker, D. (1975). Limit distributions for the maxima of stationary Gaussian processes. Stochastic Process. Appl.3 1-18. · Zbl 0296.60021 · doi:10.1016/0304-4149(75)90002-2
[24] Molchanov, I. (2005). Theory of Random Sets. Probability and Its Applications (New York). Springer, London. · Zbl 1109.60001
[25] Molchanov, I. and Strokorb, K. (2016). Max-stable random sup-measures with comonotonic tail dependence. Stochastic Process. Appl.126 2835-2859. · Zbl 1346.60072 · doi:10.1016/j.spa.2016.03.004
[26] O’Brien, G. L., Torfs, P. J. J. F. and Vervaat, W. (1990). Stationary self-similar extremal processes. Probab. Theory Related Fields87 97-119. · Zbl 0688.60025 · doi:10.1007/BF01217748
[27] Owada, T. (2016). Limit theory for the sample autocovariance for heavy-tailed stationary infinitely divisible processes generated by conservative flows. J. Theoret. Probab.29 63-95. · Zbl 1336.60047 · doi:10.1007/s10959-014-0565-9
[28] Owada, T. and Samorodnitsky, G. (2015a). Maxima of long memory stationary symmetric \(\alpha \)-stable processes, and self-similar processes with stationary max-increments. Bernoulli21 1575-1599. · Zbl 1325.60040 · doi:10.3150/14-BEJ614
[29] Owada, T. and Samorodnitsky, G. (2015b). Functional central limit theorem for heavy tailed stationary infinitely divisible processes generated by conservative flows. Ann. Probab.43 240-285. · Zbl 1320.60090 · doi:10.1214/13-AOP899
[30] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I. (1990). Integrals and Series. Vol. 3. More special functions. Gordon and Breach, New York. Translated from the Russian by G. G. Gould. · Zbl 0967.00503
[31] Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust4. Springer, New York. · Zbl 0633.60001
[32] Resnick, S., Samorodnitsky, G. and Xue, F. (2000). Growth rates of sample covariances of stationary symmetric \(\alpha \)-stable processes associated with null recurrent Markov chains. Stochastic Process. Appl.85 321-339. · Zbl 0995.62083 · doi:10.1016/S0304-4149(99)00081-2
[33] Rosiński, J. (1995). On the structure of stationary stable processes. Ann. Probab.23 1163-1187. · Zbl 0836.60038
[34] Rosiński, J. and Samorodnitsky, G. (1993). Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab.21 996-1014. · Zbl 0776.60049 · doi:10.1214/aop/1176989279
[35] Rosiński, J. and Samorodnitsky, G. (1996). Classes of mixing stable processes. Bernoulli2 365-377. · Zbl 0870.60032 · doi:10.2307/3318419
[36] Sabourin, A. and Segers, J. (2017). Marginal standardization of upper semicontinuous processes. With application to max-stable processes. J. Appl. Probab.54 773-796. · Zbl 1400.60076 · doi:10.1017/jpr.2017.34
[37] Salinetti, G. and Wets, R. J.-B. (1981). On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc.266 275-289. · Zbl 0501.28005
[38] Salinetti, G. and Wets, R. J.-B. (1986). On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res.11 385-419. · Zbl 0611.60004 · doi:10.1287/moor.11.3.385
[39] Samorodnitsky, G. (2004). Extreme value theory, ergodic theory and the boundary between short memory and long memory for stationary stable processes. Ann. Probab.32 1438-1468. · Zbl 1049.60027 · doi:10.1214/009117904000000261
[40] Samorodnitsky, G. (2005). Null flows, positive flows and the structure of stationary symmetric stable processes. Ann. Probab.33 1782-1803. · Zbl 1080.60033 · doi:10.1214/009117905000000305
[41] Samorodnitsky, G. (2016). Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering. Springer, Cham. · Zbl 1376.60007
[42] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics68. Cambridge Univ. Press, Cambridge, MA. Translated from the 1990 Japanese original. Revised by the author.
[43] Simon, T. (2014). Comparing Fréchet and positive stable laws. Electron. J. Probab.19 Article ID 16. · Zbl 1288.60018
[44] Stoev, S. A. and Taqqu, M. S. (2005). Extremal stochastic integrals: A parallel between max-stable processes and \(\alpha \)-stable processes. Extremes8 237-266. · Zbl 1142.60355 · doi:10.1007/s10687-006-0004-0
[45] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab.11 750-783. · Zbl 0417.60073 · doi:10.2307/1426858
[46] Vervaat, W. (1997). Random upper semicontinuous functions and extremal processes. In Probability and Lattices. CWI Tract110 1-56. Centre for Mathematics and Computer Science, Amsterdam. · Zbl 0882.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.