×

Higgs bundles over foliation manifolds. (English) Zbl 1466.53032

Summary: In this paper, we consider the stability, semi-stability and canonical metric structures on transverse Higgs bundles over a class of foliation manifolds, also a transversal Bogomolov inequality is obtained.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53C12 Foliations (differential geometric aspects)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
Full Text: DOI

References:

[1] Bando, S.; Siu, Y. T., Stable sheaves and Einstein-Hermitian metrics, Geometry and Analysis on Complex Manifolds, 39-50 (1994), Singapore: World Scientific, Singapore · Zbl 0880.32004 · doi:10.1142/9789814350112_0002
[2] Baraglia D, Hekmati P. A foliated Hitchin-Kobayashi correspondence. arXiv:1802.09699, 2018
[3] Bartolomeis, P. D.; Tian, G., Stability of complex vector bundles, J Differential Geom, 43, 232-275 (1996) · Zbl 0853.32033 · doi:10.4310/jdg/1214458107
[4] Biquard, O., Sur les fibres paraboliques sur une surface complexe, J Lond Math Soc (2), 53, 302-316 (1996) · Zbl 0862.53025 · doi:10.1112/jlms/53.2.302
[5] Biswas I, Kasuya H. Higgs bundles and flat connections over compact Sasakian manifolds. arXiv:1905.06178, 2019
[6] Biswas, I.; Mj, M., Higgs bundles on Sasakian manifolds, Int Math Res Not IMRN, 11, 3490-3506 (2018) · Zbl 1408.53034 · doi:10.1093/imrn/rnw329
[7] Biswas, I.; Schumacher, G., Vector bundles on Sasakian manifolds, Adv Theor Math Phys, 14, 541-561 (2010) · Zbl 1214.53037 · doi:10.4310/ATMP.2010.v14.n2.a5
[8] Bogomolov, F. A., Holomorphic tensors and vector bundles on projective varieties, Math USSR Izv, 13, 499-555 (1979) · Zbl 0439.14002 · doi:10.1070/IM1979v013n03ABEH002076
[9] Boyer, C. P.; Galicki, K., On Sasakian-Einstein geometry, Internat J Math, 11, 873-909 (2000) · Zbl 1022.53038 · doi:10.1142/S0129167X00000477
[10] Boyer, C. P.; Galicki, K., New Einstein metrics in dimension five, J Differential Geom, 57, 443-463 (2001) · Zbl 1039.53048 · doi:10.4310/jdg/1090348129
[11] Boyer, C. P.; Galicki, K., Sasakian Geometry, Oxford Mathematical Monographs (2008), Oxford: Oxford University Press, Oxford · Zbl 1155.53002
[12] Boyer, C. P.; Galicki, K.; Simanca, R., Canonical Sasakian metrics, Comm Math Phys, 279, 705-733 (2008) · Zbl 1142.53036 · doi:10.1007/s00220-008-0429-1
[13] Bradlow, S. B., Vortices in holomorphic line bundles over closed Kähler manifolds, Comm Math Phys, 135, 1-17 (1990) · Zbl 0717.53075 · doi:10.1007/BF02097654
[14] Bruzzo, U.; Otero, B. G., Metrics on semistable and numerically effective Higgs bundles, J Reine Angew Math, 612, 59-79 (2007) · Zbl 1138.14024
[15] Buchdahl, N. P., Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math Ann, 280, 625-648 (1988) · Zbl 0617.32044 · doi:10.1007/BF01450081
[16] Campana, F.; Flenner, H., A characterization of ample vector bundles on a curve, Math Ann, 287, 571-575 (1990) · Zbl 0728.14033 · doi:10.1007/BF01446914
[17] Cardona, S. A., Approximate Hermitian-Yang-Mills structures and semistability for Higgs bundles. I: Generalities and the one-dimensional case, Ann Global Anal Geom, 42, 349-370 (2012) · Zbl 1260.58006 · doi:10.1007/s10455-012-9316-2
[18] Collins, T. C.; Székelyhidi, G., K-semistability for irregular Sasakian manifolds, J Differential Geom, 109, 81-109 (2018) · Zbl 1403.53039 · doi:10.4310/jdg/1525399217
[19] Collins, T. C.; Székelyhidi, G., Sasaki-Einstein metrics and K-stability, Geom Topol, 23, 1339-1413 (2019) · Zbl 1432.32033 · doi:10.2140/gt.2019.23.1339
[20] Corlette, K., Flat G-bundles with canonical metrics, J Differential Geom, 28, 361-382 (1988) · Zbl 0676.58007 · doi:10.4310/jdg/1214442469
[21] Donaldson, S. K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc Lond Math Soc (3), 50, 1-26 (1985) · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[22] Donaldson, S. K., Infinite determinants, stable bundles and curvature, Duke Math J, 54, 231-247 (1987) · Zbl 0627.53052 · doi:10.1215/S0012-7094-87-05414-7
[23] Donaldson, S. K., Twisted harmonic maps and the self-duality equations, Proc Lond Math Soc (3), 55, 127-131 (1987) · Zbl 0634.53046 · doi:10.1112/plms/s3-55.1.127
[24] El Kacimi-Alaoui, A., Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compos Math, 79, 57-106 (1990) · Zbl 0697.57014
[25] Feng, K.; Zheng, T., Transverse fully nonlinear equations on Sasakian manifolds and applications, Adv Math, 357, 106830 (2019) · Zbl 1429.53067 · doi:10.1016/j.aim.2019.106830
[26] Futaki, A.; Ono, H.; Wang, G., Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J Differential Geom, 83, 585-635 (2009) · Zbl 1188.53042 · doi:10.4310/jdg/1264601036
[27] Gauduchon, P., La 1-forme de torsion d’une variété hermitienne compacte, Math Ann, 267, 495-518 (1984) · Zbl 0523.53059 · doi:10.1007/BF01455968
[28] Gauntlett, J. P.; Martelli, D.; Spark, J., Sasaki-Einstein metrics on S^2 × S^3, Adv Theor Math Phys, 8, 711-734 (2004) · Zbl 1136.53317 · doi:10.4310/ATMP.2004.v8.n4.a3
[29] Gauntlett, J. P.; Martelli, D.; Spark, J., A new infinite class of Sasaki-Einstein manifolds, Adv Theor Math Phys, 8, 987-1000 (2004) · Zbl 1095.53034 · doi:10.4310/ATMP.2004.v8.n6.a3
[30] Gauntlett, J. P.; Martelli, D.; Spark, J., Obstructions to the existence of Sasaki-Einstein metrics, Comm Math Phys, 273, 803-827 (2007) · Zbl 1149.53026 · doi:10.1007/s00220-007-0213-7
[31] Griffiths, P. A., Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis, 185-251 (1969), Tokyo: University of Tokyo Press, Tokyo · Zbl 0201.24001
[32] Guan, P. F.; Zhang, X., Regularity of the geodesic equation in the space of Sasakian metrics, Adv Math, 230, 321-371 (2012) · Zbl 1245.58016 · doi:10.1016/j.aim.2011.12.002
[33] He, W. Y.; Sun, S., Frankel conjecture and Sasaki geometry, Adv Math, 291, 912-960 (2016) · Zbl 1333.53057 · doi:10.1016/j.aim.2015.11.053
[34] Hitchin, N. J., The self-duality equations on a Riemann surface, Proc Lond Math Soc (3), 55, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[35] Jacob, A., Existence of approximate Hermitian-Einstein structures on semi-stable bundles, Asian J Math, 18, 859-883 (2014) · Zbl 1315.53079 · doi:10.4310/AJM.2014.v18.n5.a5
[36] Kobayashi, S., Curvature and stability of vector bundles, Proc Japan Acad Ser A Math Sci, 58, 158-162 (1982) · Zbl 0538.32021 · doi:10.3792/pjaa.58.158
[37] Kobayashi, S., Differential Geometry of Complex Vector Bundles, Publications of the Mathematical Society of Japan (1987), Princeton: Princeton University Press, Princeton · Zbl 0708.53002
[38] Kordyukov, Y.; Lejmi, M.; Weber, P., Seiberg-Witten invariants on manifolds with Riemannian foliations of codimension 4, J Geom Phys, 107, 114-135 (2016) · Zbl 1345.53029 · doi:10.1016/j.geomphys.2016.05.012
[39] Langer, A., Bogomolov’s inequality for Higgs sheaves in positive characteristic, Invent Math, 199, 889-920 (2015) · Zbl 1348.14048 · doi:10.1007/s00222-014-0534-z
[40] Li, J.; Yau, S. T., Hermitian-Yang-Mills connection on non-Kähler manifolds, Mathematical Aspects of String Theory, 560-573 (1987), Singapore: World Scientific, Singapore · Zbl 0664.53011 · doi:10.1142/9789812798411_0027
[41] Li, J. Y.; Narasimhan, M. S., Hermitian-Einstein metrics on parabolic stable bundles, Acta Math Sin Engl Ser, 15, 93-114 (1999) · Zbl 0963.32016 · doi:10.1007/s10114-999-0062-8
[42] Li, J. Y.; Zhang, C. J.; Zhang, X., Semi-stable Higgs sheaves and Bogomolov type inequality, Calc Var Partial Differential Equations, 56, 81 (2017) · Zbl 1421.53031 · doi:10.1007/s00526-017-1174-0
[43] Li, J. Y.; Zhang, X., Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc Var Partial Differential Equations, 52, 783-795 (2015) · Zbl 1311.53022 · doi:10.1007/s00526-014-0733-x
[44] Lübke, M., Stability of Einstein-Hermitian vector bundles, Manuscripta Math, 42, 245-257 (1983) · Zbl 0558.53037 · doi:10.1007/BF01169586
[45] Lübke, M.; Teleman, A., The Kobayashi-Hitchin Correspondence (1995), Singapore: World Scientific, Singapore · Zbl 0849.32020 · doi:10.1142/2660
[46] Lübke, M.; Teleman, A., The Universal Kobayashi-Hitchin Correspondence on Hermitian Manifolds, Memoirs of the American Mathematical Society (2006), Providence: Amer Math Soc, Providence · Zbl 1103.53014
[47] Maldacena, J., The large-N limit of superconformal field theories and supergravity, Internat J Theoret Phys, 38, 1113-1133 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[48] Martelli, D.; Sparks, J., Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm Math Phys, 262, 51-89 (2006) · Zbl 1112.53034 · doi:10.1007/s00220-005-1425-3
[49] Molino, P., Riemannian Foliations, Progress in Mathematics (1988), Boston: Birkhüauser, Boston · Zbl 0633.53001
[50] Narasimhan, M. S.; Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface, Ann of Math (2), 82, 540-567 (1965) · Zbl 0171.04803 · doi:10.2307/1970710
[51] Nie, Y. C.; Zhang, X., Semistable Higgs bundles over compact Gauduchon manifolds, J Geom Anal, 28, 627-642 (2018) · Zbl 1391.32026 · doi:10.1007/s12220-017-9835-y
[52] Rummler, H., Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment Math Helv, 54, 224-239 (1979) · Zbl 0409.57026 · doi:10.1007/BF02566270
[53] Simpson, C. T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J Amer Math Soc, 1, 867-918 (1988) · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[54] Simpson, C. T., Higgs bundles and local systems, Publ Math Inst Hautes Etudes Sci, 75, 5-95 (1992) · Zbl 0814.32003 · doi:10.1007/BF02699491
[55] Sparks, J., Sasaki-Einstein manifolds, Surv Differ Geom, 16, 265-324 (2011) · Zbl 1256.53037 · doi:10.4310/SDG.2011.v16.n1.a6
[56] Takemoto, F., Stable vector bundles on algebraic surfaces, Nagoya Math J, 47, 29-48 (1972) · Zbl 0245.14007 · doi:10.1017/S0027763000014896
[57] Tondeur, P., Geometry of Foliations, Monographs in Mathematics (1997), Basel: Birkhaüuser, Basel · Zbl 0905.53002
[58] Uhlenbeck, K. K.; Yau, S. T., On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm Pure Appl Math, 39, 257-293 (1986) · Zbl 0615.58045 · doi:10.1002/cpa.3160390714
[59] Uhlenbeck, K. K.; Yau, S. T., A note on our previous paper: On the existence of Hermitian Yang-Mills connections in stable vector bundles, Comm Pure Appl Math, 42, 703-707 (1989) · Zbl 0678.58041 · doi:10.1002/cpa.3160420505
[60] Zhang C J, Zhang P, Zhang X. Higgs bundles over non-compact Gauduchon manifolds. arXiv:1804.08994, 2018 · Zbl 1391.32026
[61] Zhang, X., Some invariants in Sasakian geometry, Int Math Res Not IMRN, 2011, 3335-3367 (2011) · Zbl 1242.53051
[62] Zhang, X., Energy properness and Sasakian-Einstein metrics, Comm Math Phys, 306, 229-260 (2011) · Zbl 1226.53049 · doi:10.1007/s00220-011-1292-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.