×

Bogomolov’s inequality for Higgs sheaves in positive characteristic. (English) Zbl 1348.14048

The paper under review deals with bundles in positive characteristic and extends results previously only known in characteristic zero. The main assumption is that the variety extends to the Witt vectors of length two. This allows to use the results of A. Ogus and V. Vologodsky [Publ. Math., Inst. Hautes Étud. Sci. 106, 1–138 (2007; Zbl 1140.14007)]. In addition an important technical tool is the author’s previous result [Doc. Math., J. DMV 19, 509–540 (2014; Zbl 1330.14017)] constructing a good filtration (satisfying Griffiths’ transversality) on semistable crystals. The main results are Bogomolov’s inequality for stable Higgs sheaves of rank \(\leq p\), various restriction theorems (the restriction of a semistable Higgs to a hypersurface is semistable) and local freeness of semistable Higgs with vanishing first two Chern classes.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)

References:

[1] Anchouche, B.: Bogomolov inequality for Higgs parabolic bundles. Manuscripta Math. 100, 423-436 (1999) · Zbl 0973.14021 · doi:10.1007/s002290050210
[2] Barth, W., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, 3 Folge. Springer, Berlin (2004) · Zbl 1036.14016
[3] Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Izv. Akad. Nauk SSSR 42, 1227-1287 (1978)
[4] Brenner, H., Kaid, A.: On deep Frobenius descent and flat bundles. Math. Res. Lett. 15, 1101-1115 (2008) · Zbl 1200.14061 · doi:10.4310/MRL.2008.v15.n6.a3
[5] Bruzzo, U., Hernández Ruipérez, D.: Semistability vs. nefness for (Higgs) vector bundles. Differ. Geom. Appl. 24, 403-416 (2006) · Zbl 1108.14028 · doi:10.1016/j.difgeo.2005.12.007
[6] Deligne, P., Illusie, L.: Relévements modulo \[p^2\] p2 et décomposition du complexe de de Rham. Invent. Math. 89, 247-270 (1987) · Zbl 0632.14017 · doi:10.1007/BF01389078
[7] Easton, R.W.: Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic. Proc. Am. Math. Soc. 136, 2271-2278 (2008) · Zbl 1148.14021 · doi:10.1090/S0002-9939-08-09466-5
[8] Ekedahl, T., Shepherd-Barron, N., Taylor, R.: A conjecture on the existence of compact leaves of algebraic foliations (1999). https://www.dpmms.cam.ac.uk/ nisb/ · Zbl 1330.14017
[9] Faltings, G.: Crystalline cohomology and \[p\] p-adic Galois-representations. Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 25-80. Johns Hopkins Univ. Press, Baltimore (1989) · Zbl 0805.14008
[10] Ferrand, D.: Descente de la platitude par un homomorphisme fini. C. R. Acad. Sci. Paris Sér. A-B 269, A946-A949 (1969) · Zbl 0185.10001
[11] Gieseker, D.: On a theorem of Bogomolov on Chern classes of stable bundles. Am. J. Math. 101, 77-85 (1979) · Zbl 0431.14005 · doi:10.2307/2373939
[12] Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics, vol. 31, xiv+269 pp. Friedrich Vieweg & Sohn, Braunschweig (1997) · Zbl 0872.14002
[13] Illusie, L.: Complexe Cotangent et Déformations. I. Lecture Notes in Mathematics, vol. 239. Springer, Berlin (1971) · Zbl 0224.13014
[14] Illusie, L.: Frobenius et dégénérescence de Hodge. In: Introduction la théorie de Hodge, pp. 113-168. Panoramas et Synthèses, vol. 3. Soc. Math. France, Paris (1996) · Zbl 0849.14002
[15] Jang, J.: Generically ordinary fibrations and a counterexample to Parshin’s conjecture. Mich. Math. J. 59, 169-178 (2010) · Zbl 1195.14052 · doi:10.1307/mmj/1272376031
[16] Joshi, K.: Exotic torsion, Frobenius splitting and the slope spectral sequence. Can. Math. Bull. 50, 567-578 (2007) · Zbl 1202.14019 · doi:10.4153/CMB-2007-054-9
[17] Lan, G., Sheng, M., Yang, Y., Zuo, K.: Semistable Higgs bundles of small ranks are strongly Higgs semistable (2013). arXiv:1311.2405v1 · Zbl 0769.14006
[18] Lan, G., Sheng, M., Zuo, K.: Semistable Higgs bundles and representations of algebraic fundamental groups: positive characteristic case (2012). arXiv:1210.8280v1 · Zbl 0457.14015
[19] Lang, W.: Quasi-elliptic surfaces in characteristic three. Ann. Sci. École Norm. Sup. 12, 473-500 (1979) · Zbl 0457.14015
[20] Langer, A.: A Note on Bogomolov’s Instability and Higgs Sheaves. Algebraic Geometry, pp. 237-256. de Gruyter, Berlin (2002) · Zbl 1102.14004
[21] Langer, A.: Semistable sheaves in positive characteristic. Ann. Math. 159, 241-276 (2004) · Zbl 1080.14014 · doi:10.4007/annals.2004.159.251
[22] Langer, A.: Moduli spaces of sheaves in mixed characteristic. Duke Math. J. 124, 571-586 (2004) · Zbl 1086.14036 · doi:10.1215/S0012-7094-04-12434-0
[23] Langer, A.: On the \[SS\]-fundamental group scheme. Ann. Inst. Fourier 61, 2077-2119 (2011) · Zbl 1247.14019 · doi:10.5802/aif.2667
[24] Langer, A. : On positivity and semistability of vector bundles in finite and mixed characteristics. J. Ramanujan Math. Soc. 28A(Special Issue), 287-309 (2013) · Zbl 1295.14032
[25] Langer, A.: Semistable modules over Lie algebroids in positive characteristic. Doc. Math. 19, 509-540 (2014) · Zbl 1330.14017
[26] Mehta, V.B., Ramanathan, A.: Homogeneous Bundles in Characteristic \[p\] p. Algebraic Geometry—Open Problems (Ravello, 1982). Lecture Notes in Mathematics, vol. 997, pp. 315-320 (1983) · Zbl 0532.14007
[27] Miyaoka, Y.: On the Chern numbers of surfaces of general type. Invent. Math. 42, 225-237 (1977) · Zbl 0374.14007 · doi:10.1007/BF01389789
[28] Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles and an application. Astérisque 309 viii+117 pp. (2006) · Zbl 1119.14001
[29] Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles. II. Geom. Topol. 13, 359-455 (2009) · Zbl 1176.14007 · doi:10.2140/gt.2009.13.359
[30] Mukai, S.: Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics. Kyoto J. Math. 53, 515-532 (2013) · Zbl 1291.14038 · doi:10.1215/21562261-2081279
[31] Ogus, A., Vologodsky, V.: Nonabelian Hodge theory in characteristic \[p\] p. Publ. Math. Inst. Hautes Études Sci. 106, 1-138 (2007) · Zbl 1140.14007 · doi:10.1007/s10240-007-0010-z
[32] Ramanan, S., Ramanathan, A.: Some remarks on the instability flag. Tohoku Math. J. 36, 269-291 (1984) · Zbl 0567.14027 · doi:10.2748/tmj/1178228852
[33] Raynaud, M.: Contre-exemple au “vanishing theorem” en caractéristique \[p>0\] p>0, C. P. Ramanujam—a tribute, pp. 273-278. Tata Institute of Fundamental Research Studies in Mathematics, vol. 8. Springer, Berlin (1978) · Zbl 0441.14006
[34] Shepherd-Barron, N.: Unstable vector bundles and linear systems on surfaces in characteristic \[p\] p. Invent. Math. 106, 243-262 (1991) · Zbl 0769.14006 · doi:10.1007/BF01243912
[35] Simpson, C.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867-918 (1988) · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[36] Simpson, C.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5-95 (1992) · Zbl 0814.32003 · doi:10.1007/BF02699491
[37] Szpiro, L.: Sur le théorème de rigidité de Parsin et Arakelov. Journées de Géométrie Algébrique de Rennes Astérisque 64, 169-202 · Zbl 0425.14005
[38] Yau, S.T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA 74, 1798-1799 (1977) · Zbl 0355.32028 · doi:10.1073/pnas.74.5.1798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.