×

Chaos in conservative discrete-time systems subjected to parameter drift. (English) Zbl 1466.37063

Summary: Based on the example of a paradigmatic area preserving low-dimensional mapping subjected to different scenarios of parameter drifts, we illustrate that the dynamics can best be understood by following ensembles of initial conditions corresponding to the tori of the initial system. When such ensembles are followed, snapshot tori are obtained, which change their location and shape. Within a time-dependent snapshot chaotic sea, we demonstrate the existence of snapshot stable and unstable foliations. Two easily visualizable conditions for torus breakup are found: one in relation to a discontinuity of the map and the other to a specific snapshot stable manifold, indicating that points of the torus are going to become subjected to strong stretching. In a more general setup, the latter can be formulated in terms of the so-called stable pseudo-foliation, which is shown to be able to extend beyond the instantaneous chaotic sea. The average distance of nearby point pairs initiated on an original torus crosses over into an exponential growth when the snapshot torus breaks up according to the second condition. As a consequence of the strongly non-monotonous change of phase portraits in maps, the exponential regime is found to split up into shorter periods characterized by different finite-time Lyapunov exponents. In scenarios with plateau ending, the divided phase space of the plateau might lead to the Lyapunov exponent averaged over the ensemble of a torus being much smaller than that of the stationary map of the plateau.
©2021 American Institute of Physics

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37M22 Computational methods for attractors of dynamical systems
37M20 Computational methods for bifurcation problems in dynamical systems
Full Text: DOI

References:

[1] Jánosi, D.; Tél, T., Chaos, 29, 121105 (2019) · Zbl 1429.37045 · doi:10.1063/1.5139717
[2] Ott, E., Phys. Rev. Lett., 42, 1628 (1979) · doi:10.1103/PhysRevLett.42.1628
[3] Brown, R.; Ott, E.; Grebogi, C., Phys. Rev. Lett., 59, 1173 (1987) · doi:10.1103/PhysRevLett.59.1173
[4] Brown, R.; Ott, E.; Grebogi, C., J. Stat. Phys., 49, 511 (1987) · doi:10.1007/BF01009347
[5] Wilkinson, M., J. Phys. A, 21, 4021 (1988) · doi:10.1088/0305-4470/21/21/011
[6] Haller, G., Annu. Rev. Fluid Mech., 47, 137 (2015) · doi:10.1146/annurev-fluid-010313-141322
[7] Haller, G.; Beron-Vera, F. J., J. Fluid Mech., 731, R4 (2013) · Zbl 1294.76188 · doi:10.1017/jfm.2013.391
[8] Haller, G.; Hadjighasem, A.; Farazmand, M.; Huhn, F., J. Fluid Mech., 795, 136 (2016) · Zbl 1359.76096 · doi:10.1017/jfm.2016.151
[9] Froyland, G.; Junge, O., SIAM J. Appl. Dyn. Syst., 17, 1891 (2018) · Zbl 1408.37139 · doi:10.1137/17M1129738
[10] Ramos, A. G., Sci. Rep., 8, 4575 (2018) · doi:10.1038/s41598-018-23028-8
[11] Portela, J. S. E.; Caldas, I. L.; Viana, R. L.; Sanjuán, M. A. F., Int. J. Bifurcat. Chaos, 17, 4067 (2007) · Zbl 1193.78017 · doi:10.1142/S021812740701986X
[12] Portela, J. S. E.; Caldas, I. L.; Viana, R. L., Eur. Phys. J. Spec. Top., 165, 195 (2008) · doi:10.1140/epjst/e2008-00863-y
[13] Fraile, A. C. Jr.; Roberto, M.; Caldas, I. L.; Martins, C. G. L., IEEE Trans. Plasma Sci., 45, 2906 (2017) · doi:10.1109/TPS.2017.2760632
[14] de O. Berto, D.; Ziebell, L. F.; da S. Rosa, P. R., Plasma Phys. Control. Fusion, 61, 065021 (2019) · doi:10.1088/1361-6587/ab0d6f
[15] Bürkle, R.; Vardi, A.; Cohen, D.; Anglin, J. R., Phys. Rev. A, 99, 063617 (2019) · doi:10.1103/PhysRevA.99.063617
[16] Bürkle, R.; Vardi, A.; Cohen, D.; Anglin, J. R., Phys. Rev. Lett., 123, 114101 (2019) · doi:10.1103/PhysRevLett.123.114101
[17] Montoya, F. G.; Borondo, F.; Jung, C., Commun. Nonlinear Sci. Numer. Simul., 90, 105282 (2020) · Zbl 1453.37078 · doi:10.1016/j.cnsns.2020.105282
[18] Revuetta, F., J. Chem. Phys., 147, 074104 (2017) · doi:10.1063/1.4997571
[19] Fedmaier, M., J. Phys. Chem. B, 123, 2070 (2019) · doi:10.1021/acs.jpcb.8b10541
[20] Romeiras, F. J.; Grebogi, C.; Ott, E., Phys. Rev. A, 41, 784 (1990) · doi:10.1103/PhysRevA.41.784
[21] Yu, L.; Ott, E.; Chen, Q., Phys. Rev. Lett., 65, 2935 (1990) · Zbl 1050.37515 · doi:10.1103/PhysRevLett.65.2935
[22] Lai, Y.-C.; Feudel, U.; Grebogi, C., Phys. Rev. E, 54, 6070 (1996) · doi:10.1103/PhysRevE.54.6070
[23] Lai, Y.-C., Phys. Rev. E, 60, 1558 (1999) · doi:10.1103/PhysRevE.60.1558
[24] Serquina, R.; Lai, Y.-C.; Chen, Q., Phys. Rev. E, 77, 026208 (2008) · doi:10.1103/PhysRevE.77.026208
[25] Ghil, M.; Chekroun, M. D.; Simonnet, E., Physica D, 237, 2111 (2008) · Zbl 1143.76440 · doi:10.1016/j.physd.2008.03.036
[26] Kuehn, C., Multiple Time Scale Dynamics (2015), Springer: Springer, New York · Zbl 1335.34001
[27] Ghil, M., Climate Change: Multidecadal and Beyond (2015), World Scientific: World Scientific, Singapore
[28] Drótos, G.; Bódai, T.; Tél, T., J. Clim., 28, 3275 (2015) · doi:10.1175/JCLI-D-14-00459.1
[29] Kaszás, B.; Feudel, U.; Tél, T., Phys. Rev. E, 94, 062221 (2016) · doi:10.1103/PhysRevE.94.062221
[30] Haszpra, T.; Herein, M., Sci. Rep., 9, 3896 (2019) · doi:10.1038/s41598-019-40451-7
[31] Kaszás, B.; Haszpra, T.; Herein, M., Chaos, 29, 113102 (2019) · doi:10.1063/1.5108837
[32] Bódai, T.; Drótos, G.; Herein, M.; Lunkeit, F.; Lucarini, V., J. Clim., 33, 2163 (2020) · doi:10.1175/JCLI-D-19-0341.1
[33] Pierini, S., J. Stat. Phys., 179, 1475 (2020) · Zbl 1445.76091 · doi:10.1007/s10955-019-02409-x
[34] Vincze, M.; Dan Borcia, I.; Harlander, U., Sci. Rep., 7, 254 (2017) · doi:10.1038/s41598-017-00319-0
[35] Kovács, T., J. R. Soc. Interface, 17, 20200648 (2020) · doi:10.1098/rsif.2020.0648
[36] Lai, Y.-C.; Tél, T., Transient Chaos (2011), Springer: Springer, New York · Zbl 1218.37005
[37] Lehtihet, H. E.; Miller, B. N., Physica D, 21, 93 (1986) · Zbl 0607.70011 · doi:10.1016/0167-2789(86)90080-1
[38] Korsch, H. J.; Jodl, H.-J., Chaos: A Program Collection for the PC (1999), Springer: Springer, Berlin · Zbl 0909.58026
[39] Tél, T.; Gruiz, M., Chaotic Dynamics (2006), Cambridge University Press · Zbl 1108.70001
[40] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0792.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.