×

Atom scattering off a vibrating surface: an example of chaotic scattering with three degrees of freedom. (English) Zbl 1453.37078

Summary: We study the classical chaotic scattering of a He atom off a harmonically vibrating Cu surface. The three degree of freedom (3-dof) model is studied by first considering the non-vibrating 2-dof model for different values of the energy. The set of singularities of the scattering functions shows the structure of the tangle between the stable and unstable manifolds of the fixed point at an infinite distance to the Cu surface in the Poincaré map. These invariant manifolds of the 2-dof system and their tangle can be used as a starting point for the construction of the stable and unstable manifolds and their tangle for the 3-dof coupled model. When the surface vibrates, the system has an extra closed degree of freedom and it is possible to represent the 3-dof tangle as deformation of a stack of 2-dof tangles, where the stack parameter is the energy of the 2-dof system. Also for the 3-dof system, the resulting invariant manifolds have the correct dimension to divide the constant total energy manifold. By this construction, it is possible to understand the chaotic scattering phenomena for the 3-dof system from a geometric point of view. We explain the connection between the set of singularities of the scattering function, the Jacobian determinant of the scattering function, the relevant invariant manifolds in the scattering problem, and the cross-section, as well as their behavior when the coupling due to the surface vibration is switched on. In particular, we present in detail the relation between the changes as a function of the energy in the structure of the caustics in the cross-section and the changes in the zero level set of the Jacobian determinant of the scattering function.

MSC:

37N15 Dynamical systems in solid mechanics
81V45 Atomic physics

References:

[1] Guantes, R.; Borondo, F.; Miret-Artés, S., Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering, Phys Rev E, 56, 1, 378-389 (1997)
[2] Miret-Artés, S.; Margalef-Roig, J.; Guantes, R.; Borondo, F.; Jaffé, C., Classical singularities in chaotic atom-surface scattering, Phys Rev B, 54, 15, 10397-10400 (1996)
[3] Guantes, R.; Borondo, F.; Margalef-Roig, J.; Miret-Artés, S.; Manson, J. R., Threshold resonances in classical chaotic atom-surface scattering, Surf Sci, 375, 2, L379-L384 (1997)
[4] Guantes, R.; Sanz, A. S.; Margalef-Roig, J.; Miret-Artés, S., Atom-surface diffraction: a trajectory description, Surf Sci Rep, 53, 6, 199-330 (2004)
[5] Wiggins, S., Global bifurcations and chaos (1988), Springer-Verlag New York · Zbl 0661.58001
[6] ISBN 9780691089102
[7] Abraham, R.; Shaw, C., Dynamics: the geometry of behavior (1992), Addison Wesley Longman Publishing · Zbl 0763.58001
[8] Kovács, Z.; Wiesenfeld, L., Topological aspects of chaotic scattering in higher dimensions, Phys Rev E, 63, 5, 56207 (2001)
[9] Wiggins, S.; Wiesenfeld, L.; Jaffé, C.; Uzer, T., Impenetrable barriers in phase-space, Phys Rev Lett, 86, 24, 5478-5481 (2001)
[10] Benet, L.; Broch, J.; Merlo, O.; Seligman, T. H., Symmetry breaking: a heuristic approach to chaotic scattering in many dimensions, Phys Rev E, 71, 3, 36225 (2005)
[11] Jung, C.; Merlo, O.; Seligman, T. H.; Zapfe, W. P.K., The chaotic set and the cross section for chaotic scattering in three degrees of freedom, New J Phys, 12, 10, 103021 (2010) · Zbl 1448.70056
[12] Jung, C.; Zapfe, W. P.K.; Merlo, O.; Seligman, T. H., Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom, AIP Conf Proc, 1323, 1, 330-341 (2010)
[13] Brouzos, I.; Karlis, A. K.; Chrysanthakopoulos, C. A.; Diakonos, F. K.; Constantoudis, V.; Schmelcher, P., Scattering off an oscillating target: basic mechanism and their impact on cross sections, Phys Rev E, 78, 56207 (2008)
[14] Gonzalez, F.; Jung, C., Rainbow singularities in the doubly differential cross section for scattering off a perturbed magnetic dipole, J Phys A, 45, 26, 265102 (2012)
[15] Gonzalez, F.; Drotos, G.; Jung, C., The decay of a normally hyperbolic invariant manifold to dust in a three degrees of freedom scattering system, J Phys A, 47, 4, 45101 (2014) · Zbl 1292.70011
[16] Ott, E., Chaos in dynamical systems (2002), Cambrige University Press · Zbl 1006.37001
[17] Tél, T., The joy of transient chaos, Chaos, 25, 9, 97619 (2015)
[18] Ying-Cheng, L.; Tél, T., Transient chaos, complex dynamics on finite-time scales (2011), Springer · Zbl 1218.37005
[19] Seoane, J. M.; Sanjuán, M. A.F., New developments in classical chaotic scattering, Rep Prog Phys, 76, 1, 16001 (2013)
[20] Lopesino, C.; Balibrea-Iniesta, F.; García Garrido, V.; Wiggins, S.; Mancho, A., A theoretical framework for lagrangian descriptors, Int J Bifurcation Chaos, 27, 1730001 (2017) · Zbl 1358.34048
[21] Mancho, A. M.; Wiggins, S.; Curbelo, J.; Mendoza, C., Lagrangian descriptors: a method for revealing phase space structures of general time dependent dynamical systems, Commun Nonlinear Sci Numer Simul, 18, 12, 3530-3557 (2013) · Zbl 1344.37031
[22] Fouchard, M.; Lega, E.; Froeschlé, C.; Froeschlé, C., On the relationship between fast lyapunov indicator and periodic orbits for continuous flows, Celestial Mech. Dyn. Astron., 83, 205-222 (2002) · Zbl 1083.70011
[23] Froeschlé, C.; Lega, E.; Gonczi, R., Fast lyapunov indicators. application to asteroidal motion, Celestial Mech. Dyn. Astron., 67, 1, 41-62 (1997) · Zbl 0892.70008
[24] Jung, C.; Pott, S., Classical cross section for chaotic potential scattering, J Phys A, 22, 15, 2925 (1989) · Zbl 0704.58034
[25] Meiss, J. D., Symplectic maps, variational principles, and transport, Rev Mod Phys, 64, 3, 795-848 (1992) · Zbl 1160.37302
[26] Papachristou, P. K.; Diakonos, F. K.; Constantoudis, V.; Schmelcher, P.; Benet, L., Classical scattering from oscillating targets, Phys Lett A, 306, 2, 116-126 (2002) · Zbl 1005.70011
[27] Papachristou, P. K.; Diakonos, F. K.; Constantoudis, V.; Schmelcher, P.; Benet, L., Scattering off two oscillating disks: dilute chaos, Phys Rev E, 70, 5, 56215 (2004)
[28] Jung, C.; Seligman, T. H., Integrability of the S-matrix versus integrability of the Hamiltonian, Phys Rep, 285, 3, 77-141 (1997)
[29] Jung, C.; Orellana-Rivadeneyra, G.; Luna-Acosta, G. A., Reconstruction of the chaotic set from classical cross section data, J Phys A Math Gen, 38, 3, 567 (2005) · Zbl 1076.37071
[30] Wiggins, S., Normally hiperbolic invariant manifolds in dynamical systems (1994), Springer-Verlag · Zbl 0812.58001
[31] Fenichel, N., Persistence and smoothess of the invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971) · Zbl 0246.58015
[32] Eldering, J., Normally hyperbolic invariant manifolds. the noncompact case (2013), Atlantis Press · Zbl 1303.37011
[33] Alt, H.; Gräf, H.-D.; Harney, H. L.; Hofferbert, R.; Rehfeld, H.; Richter, A., Decay of classical chaotic systems: the case of the bunimovich stadium, Phys Rev E, 53, 3, 2217-2222 (1996)
[34] Motter, A. E.; Lai, Y.-C., Dissipative chaotic scattering, Phys Rev E, 65, 1, 15205 (2001)
[35] Gaspard, P.; Dorfman, J. R., Chaotic scattering theory, thermodynamic formalism, and transport coefficients, Phys Rev E, 52, 4, 3525-3552 (1995)
[36] Kokshenev, V. B.; Nemes, M. C., Escape probability for classically chaotic systems, Physica A, 275, 1, 70-77 (2000)
[37] Dettmann, C. P.; Georgiou, O., Survival probability for the stadium billiard, Physica D, 238, 23, 2395-2403 (2009) · Zbl 1180.37046
[38] Altmann, E. G.; Portela, J. S.E.; Tél, T., Leaking chaotic systems, Rev Mod Phys, 85, 2, 869-918 (2013)
[39] Jung, C.; Tél, T.; Ziemniak, E., Application of scattering chaos to particle transport in a hydrodynamical flow, Chaos, 3, 4, 555-568 (1993)
[40] Newton, R. G., Scattering theory of waves and particles (1982), Dover · Zbl 0496.47011
[41] Drótos, G.; Jung, C.; Tél, T., When is high-dimensional scattering chaos essentially two dimensional? Measuring the product structure of singularities, Phys Rev E, 86, 5, 56210 (2012)
[42] Lin, Y.-D.; Barr, A. M.; Reichl, L. E.; Jung, C., Fractal scattering dynamics of the three-dimensional {HOCl} molecule, Phys Rev E, 87, 1, 12917 (2013)
[43] Drótos, G.; Jung, C., The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data, J Phys A, 49, 23, 235101 (2016) · Zbl 1344.81101
[44] Jung, C.; Pott, S., Semiclassical cross section for a classically chaotic scattering system, J Phys A, 23, 16, 3729-3748 (1990) · Zbl 0707.58053
[45] Jung, C., Fractal properties in the semiclassical scattering cross section of a classically chaotic system, J Phys A Math Gen, 23, 7, 1217-1224 (1990)
[46] Jensen, J. H., Convergence of the semiclassical approximation for chaotic scattering, Phys Rev Lett, 73, 2, 244-247 (1994)
[47] Jensen, J. H., Accuracy of the semiclassical approximation for chaotic scattering, Phys Rev E, 51, 2, 1576-1578 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.