×

Portfolio credit risk with predetermined default orders. (English) Zbl 1465.91123

Summary: Portfolio credit risk models can be distinguished by the use of a top-down approach or a bottom-up one. The main difference between these two approaches is the information of default identities. In this paper, we propose a conditional top-down approach which models the default times with a predetermined default order of identities. Thus conditioned on the default order, the default times of a bottom-up model can be constructed simply using a top-down approach. We use the tool of \(\mathbb{H}\) assumptions to separate the information of default orders from the ordered default times. The predetermined assumption (a special \(\mathbb{H}\) assumption) introduced here allows that the construction of the loss process relates to a probability on permutations. We can derive the probabilities on default orders from the known bottom-up models satisfying the predetermined assumption (e.g. R. Jarrow and F. Yu’s [“Counterparty risk and the pricing of defaultable securities”, J. Finance 56, No. 5, 1765–1799 (2001; doi:10.1111/0022-1082.00389)] contagion model), and obtain new choices of probability on default orders based on some simple and interesting indices of permutations such as the inverse index. Furthermore, under the predetermined assumption, some generic pricing problems of the bottom-up models can be simplified to the special case of the conditional Markov loss model. We then apply these results to Jarrow-Yu’s contagion model and give an efficient approach to the pricing problem of CDO tranches, where new expansions of the loss distributions are derived by the random matrix exponential.

MSC:

91G40 Credit risk
91G10 Portfolio theory
Full Text: DOI

References:

[1] Arnsorff, M. and Halperin, I., BSLP: Markovian bivariate spread-loss model for portfolio credit derivatives. J. Comput. Finance, 2008, 12(2), 77-100. · Zbl 1175.91172
[2] Bélanger, A., Shreve, S. and Wong, D., A general framework for pricing credit risk. Math. Finance, 2004, 14(3), 317-350. · Zbl 1134.91395
[3] Bélanger, A., Shreve, S. and Wong, D., A general framework for pricing credit risk. Math. Finance, 2004, 14(3), 317-350. · Zbl 1134.91395 · doi:10.1111/j.0960-1627.2004.t01-1-00193.x
[4] Bielecki, T.R., Cousin, A., Crèpey, S. and Herbertsson, A., A bottom-up dynamic model of portfolio credit risk. Part I: Markov copula perspective. In Recent Advances in Financial Engineering 2012, edited by A. Takahashi, Y. Muromachi, and T. Shibata, pp. 25-49, 2014a (World Scientific: Singapore). · Zbl 1314.91223
[5] Bhatngar, N. and Peled, R., Lengths of monotone subsequences in a Mallows permutation, 2008. Available online at: http://arxiv.org/abs/1306.3674 (accessed 25 April 2014). · Zbl 1295.91096
[6] Bielecki, T.R., Crepey, S. and Jeanblanc, M., Up and down credit risk. Quant. Finance, 2010, 10(10), 1137-1151. · Zbl 1201.91212
[7] Bielecki, T.R., Cousin, A., Crèpey, S. and Herbertsson, A., A bottom-up dynamic model of portfolio credit risk. Part I: Markov copula perspective. In Recent Advances in Financial Engineering 2012, edited by A. Takahashi, Y. Muromachi, and T. Shibata, pp. 25-49, 2014a (World Scientific: Singapore). · Zbl 0979.91050 · doi:10.1142/9789814571647_0002
[8] Blanchet-Scalliet, C. and Jeanblanc, M., Hazard rate for credit risk and hedging defaultable contingent claims. Finance Stoch., 2004, 8(1), 145-159. · Zbl 1052.91036
[9] Bielecki, T.R., Cousin, A., Crèpey, S. and Herbertsson, A., Dynamic hedging of portfolio credit risk in a Markov copula model. J. Optim. Theory Appl., 2014b, 161(1), 90-102. · Zbl 1295.91096 · doi:10.1007/s10957-013-0318-4
[10] Cont, R. and Minca, A., Recovering portfolio default intensities implied by CDO quotes. Math. Finance, 2013, 23(1), 94-121. · Zbl 1282.91354
[11] Bielecki, T.R., Crepey, S. and Jeanblanc, M., Up and down credit risk. Quant. Finance, 2010, 10(10), 1137-1151. · Zbl 1418.91584
[12] Ding, X., Giesecke, K. and Tomecek, P., Time-changed birth processes and multi-name credit. Oper. Res., 2009, 57(4), 990-1005. · Zbl 1233.91264
[13] Bielecki, T.R. and Rutkowski, M., Credit Risk: Modeling, Valuation and Hedging, 2002 (Springer: Berlin). · Zbl 0979.91050
[14] Duffie, D., Filipović, D. and Schachermayer, W., Affine processes and applications in finance. Ann. Appl. Probab., 2003, 13(3), 984-1053. · Zbl 1048.60059
[15] Blanchet-Scalliet, C. and Jeanblanc, M., Hazard rate for credit risk and hedging defaultable contingent claims. Finance Stoch., 2004, 8(1), 145-159. · Zbl 1199.91252 · doi:10.1007/s00780-003-0108-1
[16] Errais, E., Giesecke, K. and Goldberg, L.R., Affine point processes and portfolio credit risk. SIAM J. Financ. Math., 2010, 1(1), 642-665. · Zbl 1200.91296
[17] Bruyère, R., Cont, R., Copinot, R., Fery, L., Jaeck, C. and Spitz, T., Credit derivatives and structured credit, A guide for investors, 2006 (Wiley: Chichester). · Zbl 1210.91130
[18] Giesecke, K., Portfolio credit risk: Top-down vs bottom-up. In Frontiers in Quantitative Finance: Credit Risk and Volatility Modeling, edited by R. Cont, pp. 251-267, 2008 (Wiley: Hoboken, NJ).
[19] Cont, R. and Minca, A., Recovering portfolio default intensities implied by CDO quotes. Math. Finance, 2013, 23(1), 94-121. · Zbl 1237.91221 · doi:10.1111/j.1467-9965.2011.00491.x
[20] Giesecke, G., Kakavand, H., Mousavi, M. and Takada, H., Exact and efficient simulation of correlated defaults. SIAM J. Financ. Math., 2010, 1(1), 868-896.
[21] Das, S., Duffie, D., Kapadia, N. and Saita, L., Common failings: How corporate defaults are correlated. J. Finance, 2007, 62(1), 93-117. · Zbl 1418.91584 · doi:10.1111/j.1540-6261.2007.01202.x
[22] Herbertsson, A. and Rootzen, H., Pricing kth-to-default swaps under default contagion: The matrix-analytic approach. J. Comput. Finance, 2008, 12(1), 283-300.
[23] Ding, X., Giesecke, K. and Tomecek, P., Time-changed birth processes and multi-name credit. Oper. Res., 2009, 57(4), 990-1005. · Zbl 1233.91264 · doi:10.1287/opre.1080.0652
[24] Jeanblanc, M., Yor, M. and Chesney, M., Mathematical Methods for Financial Markets, 2009 (Springer: London). · Zbl 1205.91003
[25] Duffie, D., Credit risk with affine processes. J. Bank. Finance, 2005, 29(11), 2751-2802. · Zbl 1418.91569 · doi:10.1016/j.jbankfin.2005.02.006
[26] Moler, C. and Loan, C.V., Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 1978, 20(4), 801-836. · Zbl 0395.65012
[27] Duffie, D., Filipović, D. and Schachermayer, W., Affine processes and applications in finance. Ann. Appl. Probab., 2003, 13(3), 984-1053. · Zbl 1030.65029 · doi:10.1214/aoap/1060202833
[28] Schonbucher, P., Portfolio losses and the term structure of loss transition rates: A new methodology for the pricing of portfolio credit derivatives. Working Paper, University of Zurich, 2005.
[29] Ehlers, P. and Schonbucher, P., Background filtrations and canonical loss processes for top-down models of portfolio credit risk. Finance Stoch., 2009, 13(1), 79-103. · Zbl 1211.91246 · doi:10.1007/s00780-008-0080-x
[30] Tang, L. and Chen, Z.Y., A simple model for default times and default orders. Acta Sci. Natur. Univ. Nankaiensis (Science Edition), 2014, 47(1), 7-12.
[31] Errais, E., Giesecke, K. and Goldberg, L.R., Affine point processes and portfolio credit risk. SIAM J. Financ. Math., 2010, 1(1), 642-665. · Zbl 1186.91237 · doi:10.1137/090771272
[32] Zheng, H. and Jiang, L., Basket CDS pricing with interacting intensities. Finance Stoch., 2009, 13(3), 445-469. · Zbl 1195.91152
[33] Frey, R. and Backhaus, J., Pricing and hedging of portfolio credit derivatives with interacting default intensities. Int. J. Theor. Appl. Finance, 2008, 11(6), 611-634. · Zbl 1210.91130 · doi:10.1142/S0219024908004956
[34] Giesecke, K., Portfolio credit risk: Top-down vs bottom-up. In Frontiers in Quantitative Finance: Credit Risk and Volatility Modeling, edited by R. Cont, pp. 251-267, 2008 (Wiley: Hoboken, NJ). · doi:10.2139/ssrn.1094338
[35] Giesecke, K., Goldberg, L. and Ding, X., A top-down approach to multi-name credit. Oper. Res., 2011, 59(2), 283-300. · Zbl 1237.91221 · doi:10.1287/opre.1100.0855
[36] Giesecke, G., Kakavand, H., Mousavi, M. and Takada, H., Exact and efficient simulation of correlated defaults. SIAM J. Financ. Math., 2010, 1(1), 868-896. · doi:10.1137/090778055
[37] Herbertsson, A., Pricing synthetic CDO tranches in a model with default contagion using the matrix analytic approach. J. Credit Risk, 2008, 4(4), 3-35.
[38] Herbertsson, A. and Rootzen, H., Pricing \(k\) th-to-default swaps under default contagion: The matrix-analytic approach. J. Comput. Finance, 2008, 12(1), 283-300.
[39] Jarrow, R. and Yu, F., Counterparty risk and the pricing of defaultable. J. Finance, 2001, 56(5), 1765-1800. · doi:10.1111/0022-1082.00389
[40] Jeanblanc, M., Yor, M. and Chesney, M., Mathematical Methods for Financial Markets, 2009 (Springer: London). · Zbl 1205.91003 · doi:10.1007/978-1-84628-737-4
[41] Jorion, P. and Zhang, G., Credit contagion from counterparty risk. J. Finance, 2009, 64(5), 2053-2087. · doi:10.1111/j.1540-6261.2009.01494.x
[42] Moler, C. and Loan, C.V., Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 1978, 20(4), 801-836. · Zbl 0395.65012 · doi:10.1137/1020098
[43] Moler, C. and Loan, C.V., Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 2003, 45(1), 3-49. · Zbl 1030.65029 · doi:10.1137/S00361445024180
[44] Schonbucher, P., Portfolio losses and the term structure of loss transition rates: A new methodology for the pricing of portfolio credit derivatives. Working Paper, University of Zurich, 2005.
[45] Sidenius, J., Piterbarg, V. and Anderson, L., A new framework for dynamic credit portfolio loss modeling. Int. J. Theor. Appl. Finance, 2009, 11(2), 163-197. · Zbl 1211.91246 · doi:10.1142/S0219024908004762
[46] Tang, L. and Chen, Z.Y., A simple model for default times and default orders. Acta Sci. Natur. Univ. Nankaiensis (Science Edition), 2014, 47(1), 7-12.
[47] Yu, F., Correlated defaults in intensity-based models. Math. Finance, 2007, 17(2), 155-173. · Zbl 1186.91237 · doi:10.1111/j.1467-9965.2007.00298.x
[48] Zheng, H. and Jiang, L., Basket CDS pricing with interacting intensities. Finance Stoch., 2009, 13(3), 445-469. · Zbl 1195.91152 · doi:10.1007/s00780-009-0091-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.