×

Calibration of a sedimentation model through a continuous genetic algorithm. (English) Zbl 1465.76102

Summary: In this contribution we consider the problem of flux identification in a scalar conservation law modelling the phenomenon of sedimentation. The experimental observation data used for the calibration consist of a solid concentration profile at a fixed time. The identification problem is formulated as an optimization one, where the distance between the profiles of the model simulation and observation data is minimized by a least squares cost function. The direct problem is approximated by a monotone finite volume scheme. The numerical solution of the calibration problem is obtained by a continuous genetic algorithm. Numerical results are presented in order to validate the efficiency of the proposed algorithm.

MSC:

76T20 Suspensions
76M21 Inverse problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
76M99 Basic methods in fluid mechanics

Software:

Genocop; HE-E1GODF

References:

[1] Kynch GJ. A theory of sedimentation. Trans Faraday Soc. 1952;48:166-176. doi: 10.1039/tf9524800166 · doi:10.1039/tf9524800166
[2] Bürger R, Wendland WL. Sedimentation and suspension flows: historical perspective and some recent developments. J Eng Math. 2001;41:101-116. doi: 10.1023/A:1011934726111 · Zbl 1014.76003 · doi:10.1023/A:1011934726111
[3] Bustos MC, Concha F, Bürger R, et al. Sedimentation and thickening. Dordrecht: Kluwer Academic Publishers; 1999. (Mathematical modelling: theory and applications; vol. 8). · Zbl 0936.76001 · doi:10.1007/978-94-015-9327-4
[4] Concha F, Bürger R. Thickening in the 20th century: a historical perspective. Miner Metall Process. 2003;20(2):57-67.
[5] Berres S, Bürger R, Coronel A, et al. Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions. Appl Numer Math. 2005;52(4):311-337. doi: 10.1016/j.apnum.2004.08.002 · Zbl 1062.65099 · doi:10.1016/j.apnum.2004.08.002
[6] Bürger R, Coronel A, Sepúlveda M. A numerical descent method for an inverse problem of a scalar conservation law modelling sedimentation. Numerical mathematics and advanced applications: proceedings ENUMATH; 2007. Providence, RI: Springer Verlag; 2008. p. 225-232. · Zbl 1161.35512
[7] Bürger R, Coronel A, Sepúlveda M. Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation. Hyperbolic problems: theory, numerics and applications; Providence, RI: American Mathematical Society; 2009. p. 445-454. (Proceedings of symposia in applied mathematics; vol. 67). · Zbl 1404.65138
[8] Engquist B, Osher S. One-sided difference approximations for nonlinear conservation laws. Math Comput. 1981;36:321-351. doi: 10.1090/S0025-5718-1981-0606500-X · Zbl 0469.65067 · doi:10.1090/S0025-5718-1981-0606500-X
[9] Haupt RL, Haupt SE. Practical genetic algorithms. 2nd ed. Hoboken (NJ): Wiley-Interscience: Wiley; 2004. · Zbl 1072.68089
[10] Goldberg DE. Genetic algorithms in search, optimization and machine learning. 1st ed. Boston (MA): Addison-Wesley Longman Publishing; 1989. · Zbl 0721.68056
[11] Holland JH. Adaptation in natural and artificial systems. Ann Arbor (MI): University of Michigan Press; 1975. · Zbl 0317.68006
[12] Michalewicz Z. Genetic algorithms + data structures = evolution programs. Berlin: Springer-Verlag; 1992. (Artificial intelligence). · Zbl 0763.68054 · doi:10.1007/978-3-662-02830-8
[13] Berres S, Coronel A, Lagos R, et al. Performance of a real coded genetic algorithm for the calibration of scalar conservation laws. ANZIAM J. 2016;58(1):51-77. doi: 10.1017/S1446181116000110 · Zbl 1372.90120 · doi:10.1017/S1446181116000110
[14] Richardson JF, Zaki WN. Sedimentation and fluidization: part I. Trans Inst Chem Eng (London). 1954;32:35-53.
[15] Eymard R, Gallouët T, Herbin R.Finite volume methods. Handbook of numerical analysis. Amsterdam: North-Holland; 2000. p. 713-1020. (Handbook of numerical analysis; vol. VII). · Zbl 0981.65095
[16] LeVeque RJ. Numerical methods for conservation laws. 2nd ed. Basel: Birkhäuser Verlag; 1992. (Lectures in mathematics ETH Zürich). · Zbl 0723.65067 · doi:10.1007/978-3-0348-8629-1
[17] Toro EF. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. 3rd ed. Berlin: Springer-Verlag; 2009. · Zbl 1227.76006 · doi:10.1007/b79761
[18] Koza JR. Genetic programming: on the programming of computers by means of natural selection. Cambridge (MA): MIT Press; 1992. · Zbl 0850.68161
[19] Rechenberg I. Evolutionstrategie: optimierung technischer systeme nach prinzipien des biologischen evolution. Stuttgart: Fromman-Holzboog Verlag; 1973.
[20] Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. Chichester: Wiley; 1966. · Zbl 0148.40701
[21] Sivanandam SN, Deepa SN. Introduction to genetic algorithms. Berlin: Springer; 2008. · Zbl 1129.90001
[22] Gaffney J, Pearce C, Green D. Binary versus real coding for genetic algorithms: a false dichotomy? ANZIAM J (EMAC2009). 2010;51:C347-C359. doi: 10.21914/anziamj.v51i0.2776 · doi:10.21914/anziamj.v51i0.2776
[23] Kanagaraj G, Ponnambalam SG, Jawahar N, et al. An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization. Eng Optim. 2014;46:1331-1351. doi: 10.1080/0305215X.2013.836640
[24] Barton NG, Li CH, Spencer SJ. Control of a surface of discontinuity in continuous thickness. J Austral Math Soc Ser B. 1992;33(3):269-289. doi: 10.1017/S0334270000007050 · Zbl 0758.35009 · doi:10.1017/S0334270000007050
[25] Hansen N, Auger A, Ros R, et al. Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’10, New York, NY, USA; 2010. p. 1689-1696.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.