×

Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions. (English) Zbl 1062.65099

Summary: This paper presents the identification of parameters in the flux and diffusion functions for a quasilinear strongly degenerate parabolic equation which models the centrifugation of flocculated suspensions. We consider both a rotating tube and a basket centrifuge at a given angular velocity, and assume that the radius (i.e., the distance to the center of rotation) is the only spatial coordinate. The identification problem is formulated as the problem of minimization of a suitable cost function. Its formal gradient is derived by means of an adjoint equation, which is a backward linear degenerate parabolic equation with discontinuous coefficients.
For the numerical approach, the direct problem is discretized by the Engquist-Osher scheme. The discrete Lagrangian formulation provides an associated discrete adjoint state. The conjugate gradient method permits to find numerically the physical parameters. In particular, it allows to identify the critical concentration value at which the model equation changes from second-order parabolic to first-order hyperbolic type. Physically, this critical value is the concentration value at which the solid particles begin to touch each other and determines the change of parabolic to hyperbolic behaviour in the model equation. The new feature compared to the previous treatment of gravity settling in a column of sedimentation is the dependence of the flux function on the space variable.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35R30 Inverse problems for PDEs
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
76R05 Forced convection
76R50 Diffusion
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] G. Anestis, Eine eindimensionale Theorie der Sedimentation in Absetzbehältern veränderlichen Querschnitts und in Zentrifugen, Doctoral Thesis, Technical University of Vienna, Austria, 1981; G. Anestis, Eine eindimensionale Theorie der Sedimentation in Absetzbehältern veränderlichen Querschnitts und in Zentrifugen, Doctoral Thesis, Technical University of Vienna, Austria, 1981
[2] Anestis, G.; Schneider, W., Application of the theory of kinematic waves to the centrifugation of suspensions, Ing.-Arch., 53, 399-407 (1983)
[3] Berres, S.; Bürger, R., On gravity and centrifugal settling of polydisperse suspensions forming compressible sediments, Internat. J. Solids Structures, 40, 4965-4987 (2003) · Zbl 1059.76072
[4] Bürger, R.; Concha, F., Settling velocities of particulate systems: 12. Batch centrifugation of flocculated suspensions, Internat. J. Mineral Process., 63, 115-145 (2001)
[5] Bürger, R.; Concha, F.; Tiller, F. M., Applications of the phenomenological theory to several published experimental cases of sedimentation processes, Chem. Engrg. J., 80, 105-117 (2000)
[6] R. Bürger, A. Coronel, M. Sepúlveda, Convergence of upwind schemes for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes, Preprint 2004-09, Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile, 2004; R. Bürger, A. Coronel, M. Sepúlveda, Convergence of upwind schemes for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes, Preprint 2004-09, Departamento de Ingeniería Matemática, Universidad de Concepción, Concepción, Chile, 2004
[7] Bürger, R.; Damasceno, J. J.R.; Karlsen, K. H., A mathematical model for batch and continuous thickening in vessels with varying cross section, Internat. J. Mineral Process., 73, 183-208 (2004)
[8] Bürger, R.; Evje, S.; Karlsen, K. H., On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes, J. Math. Anal. Appl., 247, 517-556 (2000) · Zbl 0961.35078
[9] Bürger, R.; Evje, S.; Karlsen, K. H.; Lie, K.-A., Numerical methods for the simulation of the settling of flocculated suspensions, Chem. Engrg. J., 80, 91-104 (2000)
[10] Bürger, R.; Karlsen, K. H., On some upwind schemes for the phenomenological sedimentation-consolidation model, J. Engrg. Math., 41, 145-166 (2001) · Zbl 1128.76341
[11] Bürger, R.; Karlsen, K. H., A strongly degenerate convection-diffusion problem modeling centrifugation of flocculated suspensions, (Freistühler, H.; Warnecke, G., Hyperbolic Problems: Theory, Numerics, Applications, vol. I (2001), Birkhäuser: Birkhäuser Basel), 207-216
[12] Bürger, R.; Wendland, W. L.; Concha, F., Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech., 80, 79-92 (2000) · Zbl 0967.35107
[13] Cannon, J. R., Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8, 188-201 (1964) · Zbl 0131.32104
[14] Cannon, J. R.; Zachmann, D., Parameter determination in parabolic partial differential equations from overspecified boundary data, Internat. J. Engng. Sci., 20, 779-788 (1982) · Zbl 0485.35083
[15] Carrillo, J., Entropy solutions for nonlinear degenerate problems, Arch. Rat. Mech. Anal., 147, 269-361 (1999) · Zbl 0935.35056
[16] Cockburn, B.; Gripenberg, G., Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations, J. Differential Equations, 151, 231-251 (1999) · Zbl 0921.35017
[17] Coronel, A.; James, F.; Sepúlveda, M., Numerical identification of parameters for a model of sedimentation processes, Inverse Problems, 19, 951-972 (2003) · Zbl 1041.35079
[18] Dueck, J. G.; Kilimnik, D. Y.; Min’kov, L. L.; Neeße, T., Measurement of the rate of sedimentation in a platelike centrifuge, J. Engrg. Phys. Thermophys., 76, 748-759 (2003)
[19] Engquist, B.; Osher, S., One-sided difference approximations for nonlinear conservation laws, Math. Comp., 36, 321-351 (1981) · Zbl 0469.65067
[20] Evje, S.; Karlsen, K. H., Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37, 1838-1860 (2000) · Zbl 0985.65100
[21] Evje, S.; Karlsen, K. H.; Risebro, N. H., A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function, (Freistühler, H.; Warnecke, G., Hyperbolic Problems: Theory, Numerics, Applications, vol. I (2001), Birkhäuser: Birkhäuser Basel), 337-346
[22] Frömer, D.; Lerche, D., An experimental approach to the study of the sedimentation of dispersed particles in a centrifugal field, Arch. Appl. Mech., 72, 85-95 (2002) · Zbl 1076.76504
[23] Garrido, P.; Bürger, R.; Concha, F., Settling velocities of particulate systems: 11. Comparison of the phenomenological sedimentation-consolidation model with published experimental results, Internat. J. Mineral Process., 60, 213-227 (2000)
[24] Guiochon, G.; James, F.; Sepúlveda, M., Numerical results for the flux identification in a system of conservation laws, (Fey, M.; Jeltsch, R., Hyperbolic Problems: Theory, Numerics, Applications, vol. I (1999), Birkhäuser: Birkhäuser Basel), 423-432 · Zbl 0927.35131
[25] Gutman, S., Identification of discontinuous parameters in flow equations, SIAM J. Control Optim., 28, 1049-1060 (1990) · Zbl 0734.35152
[26] Hiriart-Urruty, J.-B.; Lemaréchal, C., Convex Analysis and Minimization Algorithms I (1993), Springer: Springer Berlin · Zbl 0795.49001
[27] Hundsdorfer, W.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (2003), Springer: Springer Berlin · Zbl 1030.65100
[28] James, F.; Postel, M.; Sepúlveda, M., Numerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering, Phys. D, 138, 316-333 (2000) · Zbl 0957.80001
[29] James, F.; Sepúlveda, M., Parameter identification for a model of chromatographic column, Inverse Problems, 10, 1299-1314 (1994) · Zbl 0809.35159
[30] James, F.; Sepúlveda, M., Convergence results for the flux identification in a scalar conservation law, SIAM J. Control Optim., 37, 869-891 (1999) · Zbl 0970.35161
[31] Karlsen, K. H.; Ohlberger, M., A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations, J. Math. Anal. Appl., 275, 439-458 (2002) · Zbl 1072.35545
[32] Karlsen, K. H.; Risebro, N. H., On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discr. Cont. Dyn. Syst. A, 9, 1081-1104 (2003) · Zbl 1027.35057
[33] Keung, Y. L.; Zou, Y., Numerical identification of parameters in parabolic systems, Inverse Problems, 14, 83-100 (1998) · Zbl 0894.35127
[34] Kružkov, S. N., First order quasilinear equations in several independent space variables, Math. USSR Sb., 10, 217-243 (1970) · Zbl 0215.16203
[35] Kunisch, K.; White, L., The parameter estimation problem for parabolic equations and discontinuous observation operators, SIAM J. Control Optim., 23, 900-927 (1985) · Zbl 0581.93018
[36] Lerche, D., Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field, J. Disp. Sci. Technol., 23, 699-709 (2002)
[37] Lerche, D.; Frömer, D., Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: Determination of the aggregation and deformation of rbc by flux density and viscosity functions, Biorheology, 38, 249-262 (2001)
[38] Le Veque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[39] Lueptow, R. M.; Hübler, W., Sedimentation of a suspension in a centrifugal field, J. Biomech. Engrg., 113, 485-491 (1991)
[40] Michaels, A. S.; Bolger, J. C., Settling rates and sediment volumes of flocculated Kaolin suspensions, Ind. Engrg. Chem. Fund., 1, 24-33 (1962)
[41] Richardson, J. F.; Zaki, W. N., Sedimentation and fluidization: Part I, Trans. Instn. Chem. Engrs. (London), 32, 35-53 (1954)
[42] Schaflinger, U., Centrifugal separation of a mixture, Fluid Dyn. Res., 6, 213-249 (1990)
[43] Tiller, F. M.; Leu, W. F., Basic data fitting in filtration, J. Chin. Inst. Chem. Engrs., 11, 61-70 (1980)
[44] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1997), Springer: Springer Berlin · Zbl 0888.76001
[45] Ungarish, M., On the separation of a suspension in a tube centrifuge, Internat. J. Multiphase Flow, 27, 1285-1291 (2001) · Zbl 1388.76427
[46] Yamamoto, M.; Zou, Y., Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17, 1181-1202 (2001) · Zbl 0987.35166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.