×

Hyperbolic polygonal billiards close to 1-dimensional piecewise expanding maps. (English) Zbl 1465.37041

The authors investigate billiards on convex polygons wherein collisions with the boundary of the billiard table are not simply specular, but instead the angle of reflection contracts toward the normal to the boundary. Previous work has shown that this leads to a finite number of ergodic Sinai-Ruelle-Bowen (SRB) measures whose support lies on generalized hyperbolic attractors.
In this paper the authors consider specifically the so-called slap map where the angle of reflection (with respect to the normal) is zero. In particular, they explore the relationship between those other SRB measures and ergodic absolutely continuous invariant probabilities of the one-dimensional slap map. Billiard dynamics with contacting reflection differ significantly from the dynamics with regular specular reflection. Ordinary specular reflection leads to non-hyperbolic systems.
When the angle of reflection \(f\) is identically zero, the billiard map is no longer injective; its image instead is a one-dimensional set. The restriction of the billiard map to this set, the slap map, is a piecewise affine map of the circle. For a polygon \(P\) and a contacting reflection \(f\), the authors study the function \(\Phi_{f,P}\), the billiard map of the reflection \(f\) on the polygon \(P\), to determine how close \(\Phi_{f,P}\) is to the slap map \(\Phi_{0,P}\) (as measured by a Lipschitz constant \(\lambda(f)\). The authors consider the question of the relationship between \(\Phi_{f, Q}\) and \(\Phi_{0, P}\) when \(\lambda(f)\) is small and polygon \(Q\) is close to polygon \(P\).
If the polygon \(P\) does not have parallel sides, then the corresponding slap map is uniformly expanding and admits a finite number of ergodic absolutely continuous invariant probabilities. Indeed the authors identify a broader condition on non-acute vertices that is generic in the space of polygons that guarantees the same results.

MSC:

37C83 Dynamical systems with singularities (billiards, etc.)
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems

References:

[1] Arroyo, A.; Markarian, R.; Sanders, DP, Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries, Nonlinearity, 22, 1499-1522 (2009) · Zbl 1171.37016 · doi:10.1088/0951-7715/22/7/001
[2] Arroyo, A.; Markarian, R.; Sanders, DP, Structure and evolution of strange attractors in non-elastic triangular billiards, Chaos, 22, 026107 (2012) · Zbl 1331.37036 · doi:10.1063/1.4719149
[3] Boyarsky, A.; Góra, P., Laws of Chaos, Probability and its Applications (1997), Boston: Birkhäuser Boston, Boston · Zbl 0893.28013
[4] Chernov, N.; Markarian, R., Chaotic Billiards, Mathematical Surveys and Monographs (2006), Providence: American Mathematical Society, Providence · Zbl 1101.37001 · doi:10.1090/surv/127
[5] Del Magno, G.; Lopes Dias, J.; Duarte, P.; Gaivão, JP; Pinheiro, D., Chaos in the square billiard with a modified reflection law, Chaos, 22, 026106 (2012) · Zbl 1331.37051 · doi:10.1063/1.3701992
[6] Del Magno, G.; Lopes Dias, J.; Duarte, P.; Gaivão, JP; Pinheiro, D., SRB measures for polygonal billiards with contracting reflection laws, Commun. Math. Phys., 329, 687-723 (2014) · Zbl 1351.37157 · doi:10.1007/s00220-014-1960-x
[7] Del Magno, G.; Lopes Dias, J.; Duarte, P.; Gaivão, JP, Ergodicity of polygonal slap maps, Nonlinearity, 27, 1969-1983 (2014) · Zbl 1347.37069 · doi:10.1088/0951-7715/27/8/1969
[8] Del Magno, G.; Lopes Dias, J.; Duarte, P.; Gaivão, JP, Hyperbolic polygonal billiards with finitely may ergodic SRB measures, Ergod. Theory Dyn. Syst., 38, 6, 2062-2085 (2018) · Zbl 1397.37040 · doi:10.1017/etds.2016.119
[9] Del Magno, G.; Lopes Dias, J.; Duarte, P.; Gaivão, JP, On the attractor of piecewise expanding maps of the interval, Stoch. Dyn., 20, 2, 2050009 (2020) · Zbl 1442.37054 · doi:10.1142/S0219493720500094
[10] Katok, A., Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (1986), Berlin: Springer, Berlin · Zbl 0658.58001 · doi:10.1007/BFb0099031
[11] Lasota, A.; Yorke, JA, On the existence of invariant measures for piecewise monotonic transformations, Trans. Am. Math. Soc., 186, 481-488 (1973) · Zbl 0298.28015 · doi:10.1090/S0002-9947-1973-0335758-1
[12] Markarian, R.; Pujals, EJ; Sambarino, M., Pinball billiards with dominated splitting, Ergod. Theory Dyn. Syst., 30, 1757-1786 (2010) · Zbl 1211.37045 · doi:10.1017/S0143385709000819
[13] Pesin, YaB, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izv., 10, 1281-1305 (1976) · Zbl 0383.58012 · doi:10.1070/IM1976v010n06ABEH001835
[14] Pesin, YaB, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergod. Theory Dyn. Syst., 12, 123-151 (1992) · Zbl 0774.58029 · doi:10.1017/S0143385700006635
[15] Sataev, E.A.: Invariant measures for hyperbolic maps with singularities. Uspekhi Mat. Nauk 47 (1992), no. 1(283), 147-202, 240; translation in Russ. Math. Surv. 47, 191-251 (1992) · Zbl 0795.58036
[16] Sataev, EA, Ergodic properties of the Belykh map, J. Math. Sci. (N. Y.), 95, 2564-2575 (1999) · Zbl 1144.37433 · doi:10.1007/BF02169056
[17] Tabachnikov, S.: Billiards, Panor. Synth. No. 1. SMF, Paris (1995) · Zbl 0833.58001
[18] Viana, M.: Lecture Notes on Attractors and Physical Measures. Monografías del Instituto de Matemática y Ciencias Afines, 8. Instituto de Matemática y Ciencias Afines, IMCA, Lima (1999)
[19] Wen, L., Differentiable Dynamical Systems (2016), Providence: American Mathematical Society, Providence · Zbl 1362.37054 · doi:10.1090/gsm/173
[20] Yoccoz, J.-C.: Introduction to hyperbolic dynamics. In: Real and Complex Dynamical Systems, Hillerød, 1993, NATO Advanced Science Institute Series C Mathematical and Physical Sciences, vol 464, pp 265-291. Kluwer Academic Publishers, Dordrecht (1993) · Zbl 0834.54023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.