×

Image denoising by nonlinear nonlocal diffusion equations. (English) Zbl 1465.35385

Summary: In this paper, we propose and study a nonlinear nonlocal diffusion equation of the Perona-Malik type for the removal of Gaussian noise in images. Based on the fixed-point theorem, we prove the unique solvability of the equation. We also show that solutions of the nonlocal equation converge to the solution of the local spatially regularized Perona-Malik equation if the kernel is rescaled appropriately. The new equation inherits the merit of the nonlocal method that restores details and textures of noisy images but avoids speckles and artifacts in homogeneous regions. Comparisons with other nonlocal methods for image denoising are presented.

MSC:

35R09 Integro-partial differential equations
35K59 Quasilinear parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Weickert, J., Anisotropic Diffusion in Image Processing, Vol. 1 (1998), Teubner Stuttgart · Zbl 0886.68131
[2] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 7, 629-639 (1990)
[3] Guo, Z.; Sun, J.; Zhang, D.; Wu, B., Adaptive Perona-Malik model based on the variable exponent for image denoising, IEEE Trans. Image Process., 21, 3, 958-967 (2011) · Zbl 1372.94102
[4] Catté, F.; Lions, P.-L.; Morel, J.-M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29, 1, 182-193 (1992) · Zbl 0746.65091
[5] Guidotti, P.; Kim, Y.; Lambers, J., Image restoration with a new class of forward-backward-forward diffusion equations of Perona-Malik type with applications to satellite image enhancement, SIAM J. Imaging Sci., 6, 3, 1416-1444 (2013) · Zbl 1282.35190
[6] Guidotti, P., Anisotropic diffusions of image processing from Perona-Malik on, (Variational Methods for Evolving Objects (2015), Mathematical Society of Japan), 131-156 · Zbl 1367.49007
[7] Buades, A.; Coll, B.; Morel, J.-M., A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4, 2, 490-530 (2005) · Zbl 1108.94004
[8] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2009) · Zbl 1181.35006
[9] Galiano, G., Well-posedness of an evolution problem with nonlocal diffusion, Nonlinear Anal. RWA, 45, 170-185 (2019) · Zbl 1411.35015
[10] Sun, J.; Li, J.; Liu, Q., Cauchy problem of a nonlocal \(p\)-Laplacian evolution equation with nonlocal convection, Nonlinear Anal. TMA, 95, 691-702 (2014) · Zbl 1283.45005
[11] Hinds, B.; Radu, P., Dirichlet’s principle and wellposedness of solutions for a nonlocal \(p\)-Laplacian system, Appl. Math. Comput., 219, 4, 1411-1419 (2012) · Zbl 1291.35104
[12] Andreu-Vaillo, F.; Toledo-Melero, J. J.; Mazon, J. M.; Rossi, J. D., Nonlocal diffusion problems (2010), American Mathematical Soc. · Zbl 1214.45002
[13] Karami, F.; Sadik, K.; Ziad, L., A variable exponent nonlocal \(p ( x )\)-Laplacian equation for image restoration, Comput. Math. Appl., 75, 2, 534-546 (2018) · Zbl 1409.94290
[14] Gilboa, G.; Osher, S., Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 2, 595-630 (2007) · Zbl 1140.68517
[15] Kindermann, S.; Osher, S.; Jones, P. W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 4, 1091-1115 (2005) · Zbl 1161.68827
[16] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., A nonlocal \(p\)-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Et Appl., 90, 2, 201-227 (2008) · Zbl 1165.35322
[17] Andreu-Vaillo, F.; Caselles, V.; Mazón, J. M.; Mazón, J. M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Vol. 223 (2004), Springer Science & Business Media · Zbl 1053.35002
[18] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., Local and nonlocal weighted \(p\)-Laplacian evolution equations, Publicacions Matemàtiques, 55, 1, 27-66 (2011) · Zbl 1213.35282
[19] Bogoya, M.; Gómez, A. S.C., On a nonlocal diffusion model with Neumann boundary conditions, Nonlinear Anal. Theory Methods Appl., 75, 6, 3198-3209 (2012) · Zbl 1235.35147
[20] Chasseigne, E.; Chaves, M.; Rossi, J. D., Asymptotic behavior for nonlocal diffusion equations, J. De Math. Pures Et Appl., 86, 3, 271-291 (2006) · Zbl 1126.35081
[21] Ignat, L. I.; Ignat, T. I.; Stancu-Dumitru, D., A compactness tool for the analysis of nonlocal evolution equations, SIAM J. Math. Anal., 47, 2, 1330-1354 (2015) · Zbl 1316.35035
[22] Evans, L. C., Partial Differential Equations, Vol. 19 (2010), American Mathematical Soc. · Zbl 1194.35001
[23] Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 4, 600-612 (2004)
[24] Mittal, A.; Soundararajan, R.; Bovik, A. C., Making a completely blind image quality analyzer, IEEE Signal Process. Lett., 20, 3, 209-212 (2013)
[25] Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods (1995) · Zbl 0831.65087
[26] Immerkær, J., Fast noise variance estimation, Comput. Vis. Image Underst., 64, 2, 300-302 (1996)
[27] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D Nonlinear Phenom., 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[28] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.