×

Dirichlet’s principle and wellposedness of solutions for a nonlocal \(p\)-Laplacian system. (English) Zbl 1291.35104

Summary: We prove Dirichlet’s principle for a nonlocal \(p\)-Laplacian system which arises in the nonlocal setting of peridynamics when \(p=2\). This nonlinear model includes boundary conditions imposed on a nonzero volume collar surrounding the domain. Our analysis uses nonlocal versions of integration by parts techniques that resemble the classical Green and Gauss identities. The nonlocal energy functional associated with this “elliptic” type system exhibits a general kernel which could be weakly singular. The coercivity of the system is shown by employing a nonlocal Poincaré’s inequality. We use the direct method in calculus of variations to show existence and uniqueness of minimizers for the nonlocal energy, from which we obtain the wellposedness of this steady state diffusion system.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35Q74 PDEs in connection with mechanics of deformable solids
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (2003), Academic Press · Zbl 0186.19101
[2] Aksoylu, B.; Mengesha, T., Results on nonlocal boundary value problems, Numerical Functional Analysis and Optimization, 31, 1301-1317 (2010) · Zbl 1206.35251
[3] Aksoylu, B.; Parks, M., Variational theory and domain decomposition for nonlocal problems, Applied Mathematics and Computation, 217, 14, 6498-6515 (2011) · Zbl 1214.65062
[4] Aubert, G.; Kornprobst, P., Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?, SIAM Journal on Numerical Analysis, 47, 2, 844-860 (2009) · Zbl 1189.35067
[5] Alali, B.; Lipton, R., Multiscale analysis of heterogeneous media in peridynamic formulation, Journal of Elasticity, 106, 1, 71-103 (2012) · Zbl 1320.74029
[6] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., The Neumann problem for nonlocal nonlinear diffusion equations, Journal of Evolution Equations, 8, 1, 189-215 (2008) · Zbl 1154.35314
[7] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., A nonlocal \(p\)-Laplacian evolution equation with Neumann boundary conditions, Journal de Mathematiques Pures et Appliques, 90, 2, 201-227 (2008) · Zbl 1165.35322
[8] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., The limit as \(p \to \infty\) in a nonlocal \(p -\) Laplacian evolution equation. A nonlocal approximation of a model for sandpiles, Calculus of Variations and Partial Differential Equations, 35, 279-316 (2009) · Zbl 1173.35022
[9] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., A nonlocal \(p\)-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM Journal of Mathematical Analysis, 40, 5, 1815-1851 (2009) · Zbl 1183.35034
[10] Andreu, F.; Mazón, J.; Rossi, J.; Toledo, J., Nonlocal Diffusion Problems (2010), American Mathematical Society and Real Sociedad Matemática Española · Zbl 1214.45002
[11] Bobaru, F.; Yang, M.; Frota Alves, L.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics, International Journal for Numerical Methods in Engineering, 77, 852-877 (2009) · Zbl 1156.74399
[12] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, International Journal of Heat and Mass Transfer, 53, 19-20, 4047-4059 (2010) · Zbl 1194.80010
[13] Carrillo, C.; Fife, P., Spatial effects in discrete generation population models, Journal of Mathematical Biology, 50, 161-188 (2005) · Zbl 1080.92054
[14] Coville, J.; Dupaigne, L., On a nonlocal equation arising in population dynamics, Proceedings of the Royal Society of Edinburgh Section A, 137, 1-29 (2007)
[15] Dacorogna, B., Direct Methods in the Calculus of Variations (2008), Springer · Zbl 1140.49001
[16] Du, Q.; Zhou, K., Mathematical analysis for the peridynamic nonlocal continuum theory, Mathematical Modeling and Numerical Analysis, 45, 217-234 (2011) · Zbl 1269.45005
[17] Emmrich, E.; Weckner, O., The peridynamic equation and its spatial discretization, Mathematical Modelling and Analysis, 12, 1, 12-27 (2007) · Zbl 1121.65073
[18] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Modeling and Simulation, 7, 3, 1005-1028 (2008) · Zbl 1181.35006
[19] Gilboa, G.; Osher, S., Nonlocal image regularization and supervised segmentation, Multiscale Modeling and Simulation, 6, 2, 595-630 (2007) · Zbl 1140.68517
[20] G.Gilboa, S. Osher, Nonlocal convex functionals for image regularization. UCLA CAM Report, 2006.; G.Gilboa, S. Osher, Nonlocal convex functionals for image regularization. UCLA CAM Report, 2006. · Zbl 1140.68517
[21] Gunzburger, M.; Lehoucq, R. B., A nonlocal vector calculus with applications to nonlocal boundary value problems, Multiscale Modeling and Simulation, 8, 1581-1620 (2010) · Zbl 1210.35057
[22] Mingione, G., The singular set of solutions to non-differentiable elliptic systems, Archive for Rational Mechanics and Analysis, 166, 287-301 (2003) · Zbl 1142.35391
[23] Mogilner, A.; Edelstein-Keshet, Leah, A nonlocal model for a swarm, Journal of Mathematical Biology, 38, 534-570 (1999) · Zbl 0940.92032
[24] Seleson, P.; Parks, M. L., On the role of the influence function in the peridynamic theory, International Journal for Multiscale Computational Engineering, 9, 6, 689-706 (2011)
[25] Seleson, P.; Parks, M. L.; Gunzburger, M.; Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Modeling and Simulation, 8, 1, 204-227 (2009) · Zbl 1375.82073
[26] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48, 175-209 (2000) · Zbl 0970.74030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.