×

Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term. (English) Zbl 1250.35109

Summary: We are concerned with the asymptotic analysis of positive blow-up boundary solutions for a class of quasilinear elliptic equations with an absorption term. By means of the Karamata theory, we establish the first two terms in the expansion of the singular solution near the boundary. Our analysis includes large classes of nonlinearities of Keller-Osserman type.

MSC:

35J62 Quasilinear elliptic equations
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs

References:

[1] Mohammed, A., Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298, 621-637 (2004) · Zbl 1126.35029
[2] Li, H.; Pang, P.; Wang, M., Boundary blow-up of a logistic-type porous media equation in a multiply connected domain, Proc. Roy. Soc. Edinburgh Sect. A, 140, 101-117 (2010) · Zbl 1184.35074
[3] Bieberbach, L., \( \Delta u = e^u\) und die automorphen Funktionen, Math. Ann., 77, 173-212 (1916)
[4] Lazer, A. C.; McKenna, P. J., On a problem of Bieberbach and Rademacher, Nonlinear Anal. TMA, 21, 327-335 (1993) · Zbl 0833.35052
[5] Keller, J. B., On solutions of \(\Delta u = f(u)\), Comm. Pure Appl. Math., 10, 503-510 (1957) · Zbl 0090.31801
[6] Osserman, R., On the inequality \(\Delta u \geq f(u)\), Pacific J. Math., 7, 1641-1647 (1957) · Zbl 0083.09402
[7] Loewner, C.; Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, (Contribution to Analysis (1974), Academic Press: Academic Press New York), 245-272 · Zbl 0298.35018
[8] Bandle, C.; Marcus, M., ‘Large’ solutions of semilinear elliptic equations: existence, uniqueness, and asymptotic behaviour, J. Anal. Math., 58, 9-24 (1992) · Zbl 0802.35038
[9] Bandle, C.; Moroz, V.; Reichel, W., ‘Boundary blowup’ type sub-solutions to semilinear elliptic equations with Hardy potential, J. Lond. Math. Soc., 77, 503-523 (2008) · Zbl 1141.35022
[10] López-Gómez, J., Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Differential Equations, 224, 385-439 (2006) · Zbl 1208.35036
[11] Marcus, M.; Véron, L., Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 14, 237-274 (1997) · Zbl 0877.35042
[12] Mohammed, A., Boundary asymptotic and uniqueness of solutions to the \(p\)-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325, 480-489 (2007) · Zbl 1142.35412
[13] Repovš, D., Singular solutions of perturbed logistic-type equations, Appl. Math. Comput., 218, 4414-4422 (2011) · Zbl 1239.35161
[14] Dumont, S.; Dupaigne, L.; Goubet, O.; Rădulescu, V., Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7, 271-298 (2007) · Zbl 1137.35030
[15] Karamata, J., Sur un mode de croissance régulière de fonctions. théorèmes fondamentaux, Bull. Soc. Math. France, 61, 55-62 (1933) · Zbl 0008.00807
[16] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II (1971), Wiley: Wiley New York · Zbl 0219.60003
[17] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.26001
[18] Seneta, E., (Regularly Varying Functions. Regularly Varying Functions, Lecture Notes in Mathematics, vol. 508 (1976), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 0324.26002
[19] Cîrstea, F.; Rădulescu, V., Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Ser. I, 335, 447-452 (2002) · Zbl 1183.35124
[20] Cîrstea, F.; Rădulescu, V., Asymptotics for the blow-up boundary solution of the logistic equation with absorption, C. R. Acad. Sci. Paris, Ser. I, 336, 231-236 (2003) · Zbl 1068.35035
[21] Cîrstea, F.; Rădulescu, V., Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach, Asymptot. Anal., 46, 275-298 (2006) · Zbl 1245.35037
[22] Cîrstea, F.; Rădulescu, V., Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type, Trans. Amer. Math. Soc., 359, 3275-3286 (2007) · Zbl 1134.35039
[23] Zhang, Z., The second expansion of large solutions for semilinear elliptic equations, Nonlinear Anal., 74, 3445-3457 (2011) · Zbl 1217.35074
[24] Bandle, C.; Marcus, M., On second-order effects in the boundary behavior of large solutions of semilinear elliptic problems, Differential Integral Equations, 11, 23-34 (1998) · Zbl 1042.35535
[25] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 126-150 (1984) · Zbl 0488.35017
[26] Benguria, R.; Brezis, H.; Lieb, E., The Thomas-Fermi-Von Weizsacker theory of atoms and molecules, Comm. Math. Phys., 79, 167-180 (1981) · Zbl 0478.49035
[27] Cîrstea, F.; Rădulescu, V., Solutions with boundary blow-up for a class of nonlinear elliptic problems, Houston J. Math., 29, 821-829 (2003) · Zbl 1119.35018
[28] Du, Y.; Guo, Z., Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 89, 277-302 (2003) · Zbl 1162.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.