×

Poisson-geometric analogues of Kitaev models. (English) Zbl 1464.81050

The author constructs a Poisson analogue of the Kitaev model and relates it to the Poisson structure introduced by Fock and Rosly and to the moduli spaces of flat \(G\)-bundles [V. V. Fock and A. A. Rosly, Transl., Ser. 2, Am. Math. Soc. 191, 67–86 (1999; Zbl 0945.53050)]. The author shows that the moduli space for a surface with boundary can be viewed as a Poisson counterpart to a Kitaev model with excitations, or quasi-particles, located at the boundary components. These results also allow for a decoupling of the symplectic structure on the moduli space by describing it in terms of a product Poisson manifold associated to a Poisson-geometrical Kitaev model.
As described in the introduction of the paper under review, the Poisson-Lie groups can be regarded as Poisson analogues of Hopf algebras and many structures and constructions for Hopf algebras have Poisson-Lie group counterparts. Like Hopf algebras, each Poisson-Lie group \(G\) possesses a dual Poisson-Lie group \(G^*\), and there are Poisson-geometrical notions of Heisenberg and Drinfeld doubles. Additionally, a counterpart to a module algebra over a Hopf algebra is given by the Poisson algebra \(C^\infty(M,\mathbb{R})\) of functions on a Poisson \(G\)-space \(M\), which is a Poisson manifold \(M\) together with a Poisson action of the Poisson-Lie group \(G\).
By using this correspondence the author defines an analogue of Kitaev models by replacing the Hopf-algebraic data of a Kitaev model by its Poisson-Lie counterparts. For this purpose, the author considers an embedded graph \(\Gamma\) with edge set \(E\) and assigns a copy of the Heisenberg double \(\mathcal{H}(G)\) of a Poisson-Lie group \(G\) to every edge to obtain the product Poisson manifold \(\mathcal{H}(G)^{\times E}\). The Poisson algebra of functions \(C^\infty\left(\mathcal{H}(G)^{\times E} ,\mathbb{R}\right)\) is the counterpart to the endomorphism algebra of the extended space \(\mathrm{End}_{\mathbb{C}}(H^{\otimes E})\cong\mathcal{H}(H)^{\otimes E}\), where \(H\) denotes a finite-dimensional semi-simple Hopf \(*\)-algebra over \(\mathbb{C}\), [C. Meusburger, Commun. Math. Phys. 353, No. 1, 413–468 (2017; Zbl 1460.81064)].
As the author explains, this work can be completed by writing a Poisson analogue of the Hamiltonian of a Kitaev model, constructing an analogue of the ground state and a thorough investigation of the Poisson analogues of the ribbon operators.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
53D50 Geometric quantization
81S10 Geometry and quantization, symplectic methods
53D17 Poisson manifolds; Poisson groupoids and algebroids
58D27 Moduli problems for differential geometric structures
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
16T05 Hopf algebras and their applications
17B63 Poisson algebras

References:

[1] Alekseev, A.; Schomerus, V., Representation theory of Chern-Simons observables, Duke Math. J., 85, 2, 447-510 (1996) · Zbl 0869.58005 · doi:10.1215/S0012-7094-96-08519-1
[2] Alekseev, AY; Grosse, H.; Schomerus, V., Combinatorial quantization of the Hamiltonian Chern-Simons theory I, Commun. Math. Phys., 172, 317-358 (1995) · Zbl 0842.58037 · doi:10.1007/BF02099431
[3] Alekseev, AY; Grosse, H.; Schomerus, V., Combinatorial quantization of the Hamiltonian Chern-Simons theory II, Commun. Math. Phys., 174, 561-604 (1996) · Zbl 0842.58038 · doi:10.1007/BF02101528
[4] Alekseev, AY; Malkin, AZ, Symplectic structures associated to Lie-Poisson groups, Commun. Math. Phys., 162, 1, 147-173 (1994) · Zbl 0797.58020 · doi:10.1007/BF02105190
[5] Alekseev, AY; Malkin, AZ, Symplectic structure of the moduli space of flat connection on a Riemann surface, Commun. Math. Phys., 169, 1, 99-119 (1995) · Zbl 0829.53028 · doi:10.1007/BF02101598
[6] Atiyah, MF; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Royal Soc. London. Ser. A, Math. Phys. Sci., 308, 1505, 523-615 (1983) · Zbl 0509.14014
[7] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems, Cambridge Monographs on Mathematical Physics (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1045.37033 · doi:10.1017/CBO9780511535024
[8] Balsam, B., Kirillov, Jr A.:. Turaev-Viro invariants as an extended TQFT. arXiv:1004.1533 (2010)
[9] Balsam, B., Kirillov, Jr A.: Kitaev’s Lattice Model and Turaev-Viro TQFTs. arXiv:1206.2308 (2012)
[10] Barrett, J.; Westbury, B., Invariants of piecewise-linear 3-manifolds, Trans. Am. Math. Soc., 348, 10, 3997-4022 (1996) · Zbl 0865.57013 · doi:10.1090/S0002-9947-96-01660-1
[11] Bombin, H.; Martin-Delgado, MA, Family of non-abelian Kitaev models on a lattice: Topological condensation and confinement, Phys. Rev. B, 78, 11, 115421 (2008) · doi:10.1103/PhysRevB.78.115421
[12] Buerschaper, O.; Aguado, M., Mapping Kitaev’s quantum double lattice models to Levin and Wen’s string-net models, Phys. Rev. B, 80, 155136 (2009) · doi:10.1103/PhysRevB.80.155136
[13] Buerschaper, O.; Mombelli, JM; Christandl, M.; Aguado, M., A hierarchy of topological tensor network states, J. Math. Phys., 54, 012201 (2013) · Zbl 1305.81125 · doi:10.1063/1.4773316
[14] Buffenoir, E.; Roche, P., Two dimensional lattice gauge theory based on a quantum group, Commun. Math. Phys., 170, 3, 669-698 (1995) · Zbl 0843.17030 · doi:10.1007/BF02099153
[15] Buffenoir, E.; Roche, P., Link invariants and combinatorial quantization of hamiltonian Chern Simons theory, Commun. Math. Phys., 181, 2, 331-365 (1996) · Zbl 0857.58046 · doi:10.1007/BF02101008
[16] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0839.17009
[17] Drinfeld, VG, Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. - Doklady, 27, 68-71 (1983) · Zbl 0526.58017
[18] Drinfeld, VG, Quantum groups, J. Soviet Math., 41, 2, 898-915 (1988) · Zbl 0641.16006 · doi:10.1007/BF01247086
[19] Ellis-Monaghan, JA; Moffatt, I., Graphs on Surfaces: Dualities, Polynomials and Knots (2013), Berlin: Springer, Berlin · Zbl 1283.57001 · doi:10.1007/978-1-4614-6971-1
[20] Fock, VV; Rosly, AA, Poisson structure on moduli of flat connections on Riemann surfaces and \(r\)-matrix, Am. Math. Soc. Trans., 191, 67-86 (1999) · Zbl 0945.53050
[21] Goldman, WM, The symplectic nature of fundamental groups of surfaces, Adv. Math., 54, 2, 200-225 (1984) · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[22] Goldman, WM, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., 85, 2, 263-302 (1986) · Zbl 0619.58021 · doi:10.1007/BF01389091
[23] Kitaev, A., Fault-tolerant quantum computation by anyons, Ann. Phys., 303, 2-30 (2003) · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[24] Lando, SK; Zvonkin, AK, Graphs on Surfaces and Their Applications (2004), Berlin: Springer, Berlin · Zbl 1040.05001 · doi:10.1007/978-3-540-38361-1
[25] Levin, MA; Wen, X-G, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B, 71, 045110 (2005) · doi:10.1103/PhysRevB.71.045110
[26] Lu, J-H; Weinstein, A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differ. Geom., 31, 2, 501-526 (1990) · Zbl 0673.58018 · doi:10.4310/jdg/1214444324
[27] Meusburger, C., Kitaev lattice models as a Hopf algebra gauge theory, Commun. Math. Phys., 353, 413-468 (2017) · Zbl 1460.81064 · doi:10.1007/s00220-017-2860-7
[28] Meusburger, C., Wise, D. K.: Hopf algebra gauge theory on a ribbon graph. arXiv:1512.03966 (2015)
[29] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Number 82 in CBMS Regional Conference Series in Mathematics. American Mathematical Society (1993) · Zbl 0793.16029
[30] Reshetikhin, NY; Semenov-Tian-Shansky, MA, Quantum r-matrices and factorization problems, J. Geom. Phys., 5, 4, 533-550 (1988) · Zbl 0711.17008 · doi:10.1016/0393-0440(88)90018-6
[31] Semenov-Tian-Shansky, MA, Dressing transformations and Poisson-Lie group actions, Publ. Res. Inst. Math. Sci., 21, 6, 1237-1260 (1985) · Zbl 0674.58038 · doi:10.2977/prims/1195178514
[32] Semenov-Tian-Shansky, MA, Poisson-Lie groups. The quantum duality principle and the twisted quantum double, Theor. Math. Phys., 93, 2, 1292-1307 (1992) · Zbl 0834.22019 · doi:10.1007/BF01083527
[33] Turaev, VG; Viro, OY, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology, 31, 4, 865-902 (1992) · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[34] Weinstein, A.; Xu, P., Classical solutions of the quantum Yang-Baxter equation, Commun. Math. Phys., 148, 2, 309-343 (1992) · Zbl 0849.17015 · doi:10.1007/BF02100863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.