×

Modeling the dynamic and quasi-static compression-shear failure of brittle materials by explicit phase field method. (English) Zbl 1464.74160

Summary: The phase field method is a very effective method to simulate arbitrary crack propagation, branching, convergence and complex crack networks. However, most of the current phase-field models mainly focus on tensile fracture problems, which is not suitable for rock-like materials subjected to compression and shear loads. In this paper, we derive the driving force of phase field evolution based on Mohr-Coulomb criterion for rock and other materials with shear frictional characteristics and develop a three-dimensional explicit parallel phase field model. In spatial integration, the standard finite element method is used to discretize the displacement field and the phase field. For the time update, the explicit central difference scheme and the forward difference scheme are used to discretize the displacement field and the phase field respectively. These time integration methods are implemented in parallel, which can tackle the problem of the low computational efficiency of the phase field method to a certain extent. Then, three typical benchmark examples of dynamic crack propagation and branching are given to verify the correctness and efficiency of the explicit phase field model. At last, the failure processes of rock-like materials under quasi-static compression load are studied. The simulation results can well capture the compression-shear failure mode of rock-like materials.

MSC:

74R20 Anelastic fracture and damage
74S20 Finite difference methods applied to problems in solid mechanics
74L10 Soil and rock mechanics

Software:

FEAPpv
Full Text: DOI

References:

[1] Krueger, R., Virtual crack closure technique: history, approach, and applications, Appl Mech Rev, 57, 109-143 (2004) · doi:10.1115/1.1595677
[2] Elices, M.; Guinea, GV; Gmez, J.; Planas, J., The cohesive zone model: advantages, limitations and challenges, Eng Fract Mech, 69, 137-163 (2002) · doi:10.1016/S0013-7944(01)00083-2
[3] Mos N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J · Zbl 0955.74066
[4] Zhao, J.; Li, Y.; Liu, WK, Predicting band structure of 3d mechanical metamaterials with complex geometry via XFEM, Comput Mech, 55, 659-672 (2015) · Zbl 1334.74100 · doi:10.1007/s00466-015-1129-2
[5] Rangarajan, R.; Chiaramonte, MM; Hunsweck, MJ; Shen, Y.; Lew, AJ, Simulating curvilinear crack propagation in two dimensions with universal meshes, Int J Numer Methods Eng, 102, 632-670 (2015) · Zbl 1352.74300 · doi:10.1002/nme.4731
[6] Song, J-H; Areias, PMA; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Int J Numer Methods Eng, 67, 868-893 (2006) · Zbl 1113.74078 · doi:10.1002/nme.1652
[7] Wang, T.; Liu, Z.; Zeng, Q.; Gao, Y.; Zhuang, Z., XFEM modeling of hydraulic fracture in porous rocks with natural fractures, Sci China Phys Mech Astron, 60, 84612 (2017) · doi:10.1007/s11433-017-9037-3
[8] Miehe, C.; Mauthe, S.; Teichtmeister, S., Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture, J Mech Phys Solids, 82, 186-217 (2015) · doi:10.1016/j.jmps.2015.04.006
[9] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J Mech Phys Solids, 57, 342-368 (2009) · Zbl 1421.74089 · doi:10.1016/j.jmps.2008.10.012
[10] Ren, H.; Zhuang, X.; Cai, Y.; Rabczuk, T., Dual-horizon peridynamics, Int J Numer Methods Eng, 108, 1451-1476 (2016) · Zbl 07870047 · doi:10.1002/nme.5257
[11] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput Methods Appl Mech Eng, 199, 2437-2455 (2010) · Zbl 1231.74493 · doi:10.1016/j.cma.2010.03.031
[12] Karma, A.; Kessler, DA; Levine, H., Phase-field model of mode III dynamic fracture, Phys Rev Lett, 87, 045501 (2001) · doi:10.1103/PhysRevLett.87.045501
[13] Henry, H.; Levine, H., Dynamic instabilities of fracture under biaxial strain using a phase field model, Phys Rev Lett, 93, 105504 (2004) · doi:10.1103/PhysRevLett.93.105504
[14] Chu, D.; Li, X.; Liu, Z., Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling, Int J Fract, 208, 115-130 (2017) · doi:10.1007/s10704-017-0220-4
[15] Ambati, M.; Gerasimov, T.; Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput Mech, 55, 383-405 (2015) · Zbl 1398.74270 · doi:10.1007/s00466-014-1109-y
[16] Molnr, G.; Gravouil, A., 2d and 3d Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture, Finite Elem Anal Des, 130, 27-38 (2017) · doi:10.1016/j.finel.2017.03.002
[17] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput Methods Appl Mech Eng, 341, 443-466 (2018) · Zbl 1440.74352 · doi:10.1016/j.cma.2018.07.008
[18] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified Gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput Mech, 62, 815-833 (2018) · Zbl 1459.74024 · doi:10.1007/s00466-017-1530-0
[19] Francfort, GA; Marigo, JJ, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46, 1319-1342 (1998) · Zbl 0966.74060 · doi:10.1016/S0022-5096(98)00034-9
[20] Bourdin, B.; Francfort, GA; Marigo, J-J, Numerical experiments in revisited brittle fracture, J Mech Phys Solids, 48, 797-826 (2000) · Zbl 0995.74057 · doi:10.1016/S0022-5096(99)00028-9
[21] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Commun Pure Appl Math, 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[22] Ambrosio, L.; Tortorelli, VM, Approximation of functional depending on jumps by elliptic functional via t-convergence, Commun Pure Appl Math, 43, 999-1036 (1990) · Zbl 0722.49020 · doi:10.1002/cpa.3160430805
[23] Verhoosel, CV; Borst, R., A phase-field model for cohesive fracture, Int J Numer Methods Eng, 96, 43-62 (2013) · Zbl 1352.74029 · doi:10.1002/nme.4553
[24] McAuliffe, C.; Waisman, H., A coupled phase field shear band model for ductilebrittle transition in notched plate impacts, Comput Methods Appl Mech Eng, 305, 173-195 (2016) · Zbl 1425.74352 · doi:10.1016/j.cma.2016.02.018
[25] Shen, R.; Waisman, H.; Guo, L., Fracture of viscoelastic solids modeled with a modified phase field method, Comput Methods Appl Mech Eng (2018) · Zbl 1440.74365 · doi:10.1016/j.cma.2018.09.018
[26] Borden, MJ; Hughes, TJR; Landis, CM; Anvari, A.; Lee, IJ, A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Eng, 312, 130-166 (2016) · Zbl 1439.74343 · doi:10.1016/j.cma.2016.09.005
[27] Miehe, C.; Schnzel, L-M; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput Methods Appl Mech Eng, 294, 449-485 (2015) · Zbl 1423.74838 · doi:10.1016/j.cma.2014.11.016
[28] Miehe, C.; Hofacker, M.; Schnzel, LM; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elasticplastic solids, Comput Methods Appl Mech Eng, 294, 486-522 (2015) · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[29] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput Methods Appl Mech Eng, 304, 619-655 (2016) · Zbl 1425.74423 · doi:10.1016/j.cma.2015.09.021
[30] Geelen, Rudy J. M.; Liu, Yingjie; Hu, Tianchen; Tupek, Michael R.; Dolbow, John E., A phase-field formulation for dynamic cohesive fracture, Computer Methods in Applied Mechanics and Engineering, 348, 680-711 (2019) · Zbl 1440.74359 · doi:10.1016/j.cma.2019.01.026
[31] Spatschek, R.; Brener, E.; Karma, A., Phase field modeling of crack propagation, Philos Mag, 91, 75-95 (2011) · doi:10.1080/14786431003773015
[32] Hofacker, M.; Miehe, C., A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns, Int J Numer Methods Eng, 93, 276-301 (2013) · Zbl 1352.74022 · doi:10.1002/nme.4387
[33] Ziaei-Rad, V.; Shen, Y., Massive parallelization of the phase field formulation for crack propagation with time adaptivity, Comput Methods Appl Mech Eng, 312, 224-253 (2016) · Zbl 1439.74379 · doi:10.1016/j.cma.2016.04.013
[34] Borden, MJ; Verhoosel, CV; Scott, MA; Hughes, TJR; Landis, CM, A phase-field description of dynamic brittle fracture, Comput Methods Appl Mech Eng, 217-220, 77-95 (2012) · Zbl 1253.74089 · doi:10.1016/j.cma.2012.01.008
[35] Trabelsi, H.; Jamei, M.; Zenzri, H.; Olivella, S., Crack patterns in clayey soils: experiments and modeling, Int J Numer Anal Met, 36, 1410-1433 (2012) · doi:10.1002/nag.1060
[36] Cajuhi, T.; Sanavia, L.; Lorenzis, L., Phase-field modeling of fracture in variably saturated porous media, Comput Mech, 61, 299-318 (2018) · Zbl 1458.74125 · doi:10.1007/s00466-017-1459-3
[37] Zhang, X.; Sloan, SW; Vignes, C.; Sheng, D., A modification of the phase-field model for mixed mode crack propagation in rock-like materials, Comput Methods Appl Mech Eng, 322, 123-136 (2017) · Zbl 1439.74188 · doi:10.1016/j.cma.2017.04.028
[38] Bryant, EC; Sun, W., A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput Methods Appl Mech Eng, 342, 561-584 (2018) · Zbl 1440.74218 · doi:10.1016/j.cma.2018.08.008
[39] Choo, J.; Sun, W., Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow, Comput Methods Appl Mech Eng, 330, 1-32 (2018) · Zbl 1439.74184 · doi:10.1016/j.cma.2017.10.009
[40] Labuz, JF; Zang, A., Mohr-Coulomb failure criterion, Rock Mech Rock Eng, 45, 975-979 (2012) · doi:10.1007/s00603-012-0281-7
[41] Remmers, JJC; Borst, R.; Needleman, A., The simulation of dynamic crack propagation using the cohesive segments method, J Mech Phys Solids, 56, 70-92 (2008) · Zbl 1162.74438 · doi:10.1016/j.jmps.2007.08.003
[42] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int J Numer Methods Eng, 83, 1273-1311 (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[43] Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Amsterdam [google-Books-ID: VvpU3zssDOwC] · Zbl 1084.74001
[44] Kalthoff J, Winkler S (1987) Failure mode transition of high rates of shear loading. In: Chiem C, Kunze H, Meyer L (eds) Proceedings of the international conference on impact loading and dynamic behavior of materials, vol 1, pp 185-195
[45] Belytschko, T.; Chen, H.; Xu, J.; Zi, G., Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int J Numer Methods Eng, 58, 1873-1905 (2003) · Zbl 1032.74662 · doi:10.1002/nme.941
[46] Sharon, E.; Gross, SP; Fineberg, J., Local crack branching as a mechanism for instability in dynamic fracture, Phys Rev Lett, 74, 5096-5099 (1995) · doi:10.1103/PhysRevLett.74.5096
[47] Fliss, S.; Bhat, HS; Dmowska, R.; Rice, JR, Fault branching and rupture directivity, J Geophys Res Solid Earth, 110, b6 (2005) · doi:10.1029/2004JB003368
[48] Xu, D.; Liu, Z.; Liu, X.; Zeng, Q.; Zhuang, Z., Modeling of dynamic crack branching by enhanced extended finite element method, Comput Mech, 54, 489-502 (2014) · Zbl 1398.74422 · doi:10.1007/s00466-014-1001-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.