×

A coupled phase field shear band model for ductile-brittle transition in notched plate impacts. (English) Zbl 1425.74352

Summary: Well known experiments of projectile impacts on pre-notched plates have demonstrated a transition from brittle to ductile failure with increasing strain rate. At low rates cracks form at the notch tip and propagate at roughly \(70^{\circ}\) counter clockwise from the loading direction. At high rates shear bands form and propagate in a downward curving path. This occurs because of the formation of shear bands, which occurs more readily at the higher velocities, prevents the development of the large principal strains needed to initiate a crack.
In this paper, we present a coupled model that is capable of capturing the failure transition. The finite deformation model consists of a thermoviscoplastic material with strain and strain rate hardening, thermal softening and diffusive regularization. Fracture is modeled with the phase field method, for which a novel modification is presented to account for degradation of the material due to inelastic working.
The numerical model including the discretization and linearization and monolithic scheme is presented and discussed in detail. Numerical simulations of the notched plate impact problem studied by M. Zhou et al. [“Dynamically propagating shear bands in impact-loaded prenotched plates. I: Experimental investigations of temperature signatures and propagation speed”, J. Mech. Phys. Solids 44, No. 6, 981–1006 (1996; doi:10.1016/0022-5096(96)00003-8)] are presented up to the point of shear band or fracture initiation, demonstrating the transition from brittle fracture under minor yielding to ductile failure by shear banding.

MSC:

74M20 Impact in solid mechanics
74K20 Plates
74R10 Brittle fracture
Full Text: DOI

References:

[1] Wright, T. W., The physics and mathematics of adiabatic shear bands, (Cambridge Monographs on Mechanics (2002), Cambridge University Press: Cambridge University Press Cambridge, UK, New York) · Zbl 1006.74002
[2] Arriaga, M.; McAuliffe, C.; Waisman, H., Onset of shear band localization by a local generalized eigenvalue analysis, Comput. Methods Appl. Mech. Engrg., 289, 179-208 (2015) · Zbl 1423.74166
[3] Bai, Y. L., Thermo-plastic instability in simple shear, J. Mech. Phys. Solids, 30, 4, 195-207 (1982) · Zbl 0491.73037
[4] Fressengeas, C.; Molinari, A., Instability and localization of plastic flow in shear at high strain rates, J. Mech. Phys. Solids, 35, 2, 185-211 (1987) · Zbl 0601.73036
[5] Ling, X.; Belytschko, T., Thermal softening induced plastic instability in rate-dependent materials, J. Mech. Phys. Solids, 57, 4, 788-802 (2009) · Zbl 1252.74019
[6] Kalthoff, J. F.; Winkler, S., Failure mode transition at high rates of shear loading, (Chiem, C.; Kunze, H. D.; Meyer, L. W., Impact Loading and Dynamic Behavior of Materials, vol. 1 (1987), DGM Informationsgesellschaft Verlag), 185-195
[7] Kalthoff, J. F., Modes of dynamic shear failure in solids, Int. J. Fract., 101, 1-2, 1-31 (2000)
[8] Zhou, M.; Ravichandran, G.; Rosakis, A. J., Dynamically propagating shear bands in impact-loaded prenotched plates—i. Experimental investigations of temperature signatures and propagation speed, J. Mech. Phys. Solids, 6, 981-1006 (1996)
[9] Needleman, A.; Tvergaard, V., Analysis of a brittle-ductile transition under dynamic shear loading, Int. J. Solids Struct., 32, 17-18, 2571-2590 (1995) · Zbl 0919.73222
[10] Needleman, A.; Tvergaard, V., Numerical modeling of the ductile-brittle transition, Int. J. Fract., 101, 1-2, 73-97 (2000), (ISSN: 0376-9429, 1573-2673) http://dx.doi.org/10.1023/A:1007520917244
[11] Batra, R. C.; Gummalla, R. R., Effect of material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate, Int. J. Fract., 101, 1-2, 99-140 (2000), (ISSN: 0376-9429, 1573-2673) http://dx.doi.org/10.1023/A:1007504431357
[12] Li, S.; Liu, W. K.; Rosakis, A. J.; Belytschko, T.; Hao, W., Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition, Int. J. Solids Struct., 39, 5, 1213-1240 (2002) · Zbl 1090.74698
[13] McAuliffe, C.; Waisman, H., A unified model for metal failure capturing shear banding and fracture, Int. J. Plast., 65, 131-151 (2015)
[14] Batra, R.; Lear, M., Adiabatic shear banding in plane strain tensile deformations of 11 thermoelastoviscoplastic materials with finite thermal wave speed, Int. J. Plast., 21, 8, 1521-1545 (2005) · Zbl 1148.74309
[15] Batra, R. C.; Chen, L., Instability analysis and shear band spacing in gradient-dependent thermoviscoplastic materials with finite speeds of thermal waves, Arch. Mech., 53, 2, 167-192 (2001), URL http://am.ippt.pan.pl/am/article/view/v53p167 · Zbl 1006.74026
[16] Batra, R. C.; Kim, C. H., Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials, Int. J. Plast., 6, 2, 127-141 (1990)
[17] Batra, R. C.; Kim, C. H., Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands, Internat. J. Engrg. Sci., 29, 8, 949-960 (1991)
[18] Batra, R. C., The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials, Int. J. Plast., 3, 1, 75-89 (1987)
[19] McAuliffe, C.; Waisman, H., Mesh insensitive formulation for initiation and growth of shear bands using mixed finite elements, Comput. Mech., 51, 5, 807-823 (2013), (ISSN: 0178-7675, 1432-0924) http://dx.doi.org/10.1007/s00466-012-0765-z · Zbl 1308.74039
[20] McAuliffe, C.; Waisman, H., A Pian-Sumihara type element for modeling shear bands at finite deformation, Comput. Mech., 53, 5, 925-940 (2014), (ISSN: 0178-7675, 1432-0924) http://dx.doi.org/10.1007/s00466-013-0940-x · Zbl 1398.74370
[21] Wright, T. W.; Walter, J. W., On stress collapse in adiabatic shear bands, J. Mech. Phys. Solids, 35, 6, 701-720 (1987)
[22] Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 221, 582-593, 163-198 (1921), (ISSN: 1364-503X, 1471-2962) http://dx.doi.org/10.1098/rsta.1921.0006 · Zbl 1454.74137
[23] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008), (ISSN: 0374-3535, 1573-2681) http://dx.doi.org/10.1007/s10659-007-9107-3 · Zbl 1176.74018
[24] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[25] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010) · Zbl 1202.74014
[26] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778 (2010) · Zbl 1231.74022
[27] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217, 77-95 (2012) · Zbl 1253.74089
[28] Bourdin, B.; Larsen, C. J.; Richardson, C. L., A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168, 2, 133-143 (2010), (ISSN: 0376-9429, 1573-2673) http://dx.doi.org/10.1007/s10704-010-9562-x · Zbl 1283.74055
[30] Crosby, T.; Ghoniem, N., Phase-field modeling of thermomechanical damage in tungsten under severe plasma transients, Comput. Mech., 50, 2, 159-168 (2012), (ISSN: 0178-7675, 1432-0924) http://dx.doi.org/10.1007/s00466-012-0733-7 · Zbl 1398.74274
[31] Duda, F. P.; Ciarbonetti, A.; Sánchez, P. J.; Huespe, A. E., A phase-field/gradient damage model for brittle fracture in elastic-plastic solids, Int. J. Plast., 65, 269-296 (2015)
[32] McAuliffe, C.; Waisman, H., On the importance of nonlinear elastic effects in shear band modelling, Int. J. Plast., 71, 10-31 (2015)
[33] Lubarda, V. A., Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics, Appl. Mech. Rev., 57, 2, 95 (2004)
[34] Anand, L., On h. Hencky’s approximate strain-energy function for moderate deformations, J. Appl. Mech., 46, 1, 78-82 (1979) · Zbl 0405.73032
[35] Auricchio, F.; Taylor, R., A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes, Int. J. Plast., 15, 12, 1359-1378 (1999) · Zbl 0957.74078
[36] Caminero, M.Á.; Montáns, F. J.; Bathe, K.-J., Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures, Comput. Struct., 89, 11-12, 826-843 (2011)
[37] Weber, G.; Anand, L., Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Methods Appl. Mech. Engrg., 79, 2, 173-202 (1990) · Zbl 0731.73031
[38] Buehler, M. J.; Abraham, F. F.; Gao, H., Hyperelasticity governs dynamic fracture at a critical length scale, Nature, 426, 6963, 141-146 (2003)
[39] Buehler, M. J.; Gao, H., Dynamical fracture instabilities due to local hyperelasticity at crack tips, Nature, 439, 7074, 307-310 (2006)
[40] Miehe, C.; Schänzel, L.-M., Phase field modeling of fracture in rubbery polymers. part i: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 93-113 (2014) · Zbl 1323.74012
[41] Miehe, C., On the representation of Prandtl-Reuss tensors within the framework of multiplicative elastoplasticity, Int. J. Plast., 10, 6, 609-621 (1994) · Zbl 0810.73016
[42] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 1, 41-104 (1992) · Zbl 0764.73088
[43] Dafalias, Y. F., Plastic spin: necessity or redundancy?, Int. J. Plast., 14, 9, 909-931 (1998) · Zbl 0947.74008
[44] Zhou, M.; Ravichandran, G.; Rosakis, A. J., Dynamically propagating shear bands in impact-loaded prenotched plates—II. Numerical simulations, J. Mech. Phys. Solids, 44, 6, 1007-1032 (1996)
[45] Areias, P. M.A.; Belytschko, T., Two-scale shear band evolution by local partition of unity, Internat. J. Numer. Methods Engrg., 66, 5, 878-910 (2006), (ISSN: 0029-5981, 1097-0207) http://dx.doi.org/10.1002/nme.1589 · Zbl 1110.74841
[46] Areias, P. M.A.; Belytschko, T., Two-scale method for shear bands: thermal effects and variable bandwidth, Internat. J. Numer. Methods Engrg., 72, 6, 658-696 (2007), (ISSN: 00295981, 10970207) http://dx.doi.org/10.1002/nme.2028 · Zbl 1194.74355
[47] Bodner, S. R.; Partom, Y., Constitutive equations for elastic-viscoplastic strain-hardening materials, J. Appl. Mech., 42, 2, 385-389 (1975)
[48] Johnson, G. R.; Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., 21, 1, 31-48 (1985)
[49] Khan, A. S.; Huang, S., Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1, Int. J. Plast., 8, 4, 397-424 (1992)
[50] Khan, A. S.; Liang, R., Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling, Int. J. Plast., 15, 10, 1089-1109 (1999) · Zbl 0938.74502
[51] Zerilli, F. J.; Armstrong, R. W., Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. Appl. Phys., 61, 5, 1816-1825 (1987), (ISSN: 0021-8979, 1089-7550) http://dx.doi.org/10.1063/1.338024
[52] Babuška, P. I., Error-bounds for finite element method, Numer. Math., 16, 4, 322-333 (1971), (ISSN: 0029-599X, 0945-3245) http://dx.doi.org/10.1007/BF02165003 · Zbl 0214.42001
[53] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, ESAIM Math. Model. Numer. Anal., 8, R2, 129-151 (1974) · Zbl 0338.90047
[54] Comi, C.; Perego, U., A unified approach for variationally consistent finite elements in elastoplasticity, Comput. Methods Appl. Mech. Engrg., 121, 1-4, 323-344 (1995) · Zbl 0852.73058
[55] Berger-Vergiat, L.; McAuliffe, C.; Waisman, H., Parallel preconditioners for monolithic solution of shear bands, J. Comput. Phys., 304, 359-379 (2015) · Zbl 1349.74317
[56] Taylor, R. L., FEAP-A Finite Element Analysis Program (2011), Univ. of Calif: Univ. of Calif Berkeley
[57] Henderson, A., ParaView Guide, A Parallel Visualization Application (2012), Kitware Inc., ISBN: 978-1-1930934-24-5
[58] Hunter, J., Matplotlib: A 2d graphics environment, Comput. Sci. Eng., 9, 3, 90-95 (2007)
[59] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zhang, H., PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.5 (2014), Argonne National Laboratory
[61] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[62] Davis, T. A., Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 2, 196-199 (2004) · Zbl 1072.65037
[63] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998), URL http://www.sciencedirect.com/science/article/pii/S0022509698000349 · Zbl 0966.74060
[64] Bourdin, B.; Francfort, G. A.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1-3, 5-148 (2008), (ISSN: 0374-3535, 1573-2681) http://dx.doi.org/10.1007/s10659-007-9107-3. URL http://link.springer.com/article/10.1007/s10659-007-9107-3 · Zbl 1176.74018
[65] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 10, 1273-1311 (2010), URL http://onlinelibrary.wiley.com/doi/10.1002/nme.2861/abstract · Zbl 1202.74014
[66] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778 (2010), URL http://www.sciencedirect.com/science/article/pii/S0045782510001283 · Zbl 1231.74022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.