×

Consequences of refuge and diffusion in a spatiotemporal predator-prey model. (English) Zbl 1464.35021

Summary: In this investigation, we offer and examine a predator-prey interacting model with prey refuge in proportion to both the species and Beddington-DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray-Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe-spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction-diffusion predator-prey system.

MSC:

35B36 Pattern formations in context of PDEs
35B32 Bifurcations in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)

Software:

PRED_PREY
Full Text: DOI

References:

[1] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: ratio-dependence, J. Theoret. Biol., 139, 311-326 (1989)
[2] Hanski, I., The functional response of predators: worries about scale, Trends Ecol. Evol., 6, 141-142 (1991)
[3] Cosner, C., Variability, vagueness and comparison methods for ecological models, Bull. Math. Biol., 58, 207-246 (1996) · Zbl 0878.92029
[4] Hsu, S. B.; Hwang, T. W.; Kuang, Y., Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol., 43, 377-396 (2001) · Zbl 1007.34054
[5] Murray, J. D., Mathematical Biology I II (2002), Springer-Verlag: Springer-Verlag Heidelberg
[6] Salt, G. W., Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum, Ecology, 55, 434-439 (1974)
[7] Hassell, M. P., Mutual interference between searching insect parasites, J. Anim. Ecol., 40, 473-486 (1971)
[8] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975)
[9] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V., A model for throphic interaction, Ecology, 56, 881-892 (1975)
[10] Cantrell, R. S.; Cosner, C., On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257, 206-222 (2001) · Zbl 0991.34046
[11] Zeng, Z.; Fan, M., Study on a non-autonomous predator-prey system with Beddington-DeAngelis functional response, Math. Comput. Modelling, 48, 1755-1764 (2008) · Zbl 1187.34052
[12] Li, H.; Takeuchi, Y., Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 374, 644-654 (2011) · Zbl 1213.34097
[13] McNair, J. N., The effects of refuges on predator-prey interactions: a reconsideration, Theor. Popul. Biol., 29, 38-63 (1986) · Zbl 0594.92017
[14] Krivan, V., Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges, Theor. Popul. Biol., 53, 131-142 (1998) · Zbl 0945.92021
[15] Gonzalez-Olivares, E.; Ramos-Jiliberto, R., Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166, 135-146 (2003)
[16] Ko, W.; Ryu, K., Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231, 534-550 (2006) · Zbl 1387.35588
[17] Ji, L.; Wu, C., Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal. RWA, 11, 2285-2295 (2010) · Zbl 1203.34070
[18] Hawkins, B. A.; Thomas, M. B.; Hochberg, M. E., Refuge theory and biological control, Science, 262, 1429-1432 (1993)
[19] Collings, J. B., Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57, 63-76 (1995) · Zbl 0810.92024
[20] Gonzalez-Olivares, E.; Gonzalez-Yanez, B.; Becerra-Klix, R., Prey refuge use as a function of predator-prey encounters, Int. J. Biomath. (2012), Private communication, submitted for publication
[21] Hassell, M. P., The Dynamics of Arthropod Predator-Prey Systems (1978), Princeton University Press: Princeton University Press Princeton · Zbl 0429.92018
[22] Srinivasu, P. D.N.; Gayitri, I. L., Influence of prey reserve capacity on predator-prey dynamics, Ecol. Model., 181, 191-202 (2005)
[23] Yafia, R.; Eladnani, F.; Alaoui, H. T., Limit cycle and numerical simulations for small and large delays in a predator-prey model with modeified Leslie-Gower and Holling-type II schemes, Nonlinear Anal. RWA, 9, 2055-2067 (2008) · Zbl 1156.34342
[24] Guin, L. N.; Mandal, P. K., Effect of prey refuge on spatiotemporal dynamics of reaction-diffusion system, Comput. Math. Appl., 68, 1325-1340 (2014) · Zbl 1367.92128
[25] Guin, L. N.; Acharya, S., Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting, Nonlinear Dynam., 88, 1501-1533 (2017) · Zbl 1375.92050
[26] Molla, H.; Sabiar Rahman, Md.; Sarwardi, S., Dynamics of a predator-prey model with Holling Type II functional response incorporating a prey refuge depending on both the species, Int. J. Nonlinear Sci. Numer. Simul., 20, 89-104 (2019) · Zbl 1461.92092
[27] Haque, Md. M.; Sarwardi, S., Dynamics of a harvested prey-predator model with prey refuge dependent on both species, Int. J. Bifur. Chaos, 28, 1-16 (2018) · Zbl 1404.34060
[28] Ruxton, G. D., Short term refuge use and stability of predator-prey models, Theor. Popul. Biol., 47, 1-17 (1995) · Zbl 0812.92023
[29] Haque, M.; Rahman, M. S.; Venturino, E.; Li, B., Effect of a functional response-dependent prey refuge in a predator-prey model, Ecol. Complex., 20, 248-256 (2014)
[30] Dubey, B.; Das, B.; Hussain, J., A predator-prey interaction model with self and cross-diffusion, Ecol. Model., 141, 67-76 (2001)
[31] Wang, J.; Shi, J.; Wei, J., Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differential Equations, 251, 1276-1304 (2011) · Zbl 1228.35037
[32] Sun, G. Q.; Jin, Z.; Li, L.; Haque, M.; Li, B. L., Spatial patterns of a predator-prey model with cross-diffusion, Nonlinear Dynam., 69, 1631-1638 (2012) · Zbl 1263.34062
[33] Madzvamuse, A.; Ndakwo, H.; Barreira, R., Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations, J. Math. Biol., 70, 709-743 (2015) · Zbl 1335.92035
[34] Shi, H. B.; Ruan, S., Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 80, 1534-1568 (2015) · Zbl 1327.35376
[35] Sambath, M.; Balachandran, K.; Guin, L. N., Spatiotemporal patterns in a predator-prey model with cross-diffusion effect, Int. J. Bifurcation Chaos, 28, Article 1830004 pp. (2018) · Zbl 1388.35009
[36] Han, R.; Dai, B., Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal. RWA, 45, 822-853 (2019) · Zbl 1406.37064
[37] Chakraborty, B.; Bairagi, N., Complexity in a prey-predator model with prey refuge and diffusion, Ecol. Complex., 37, 11-23 (2019)
[38] Ye, Q. X.; Li, Z. Y.; Wang, M. X.; Wu, Y. P., Introduction to Reaction-Diffusion Equations (2011), Science Press: Science Press Bei Jing
[39] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1981), Springer-Verlag: Springer-Verlag Berlin/NewYork · Zbl 0456.35001
[40] Malchow, H., Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics, Proc. R. Soc. B, 251, 103-109 (1993)
[41] Cross, M.; Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems (2009), Cambridge University Press: Cambridge University Press Cambridage · Zbl 1177.82002
[42] Hernandez, J., Some existence and stability results for solutions of reaction-diffuision systems with nonlinear boundary conditions, (Nonlinear Differential Equations:Invariance, Stability, and Bifurcaion (1981), Academic Press), 161-173 · Zbl 0467.35047
[43] Lin, L. S.; Ni, W. M.; Takagi, I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72, 1-27 (1988) · Zbl 0676.35030
[44] Lou, Y.; Ni, W. M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032
[45] Pang, P. Y.H.; Wang, M., Quality analysis of a ratio-dependent predator-prey system with diffusion, Proc. R. Soc. Edinburgh, 133A, 919-942 (2003) · Zbl 1059.92056
[46] Garvie, M. R., Finite-Difference schemes for reaction-diffusion equations modelling predator-prey interactions in MATLAB, Bull. Math. Biol., 69, 931-956 (2007) · Zbl 1298.92081
[47] von Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y., Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87, Article 198101 pp. (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.