×

Dynamics of a harvested prey-predator model with prey refuge dependent on both species. (English) Zbl 1404.34060

Summary: The present paper deals with a prey-predator model with prey refuge in proportion to both species, and the independent harvesting of each species. Our study shows that using refuge as control, it can break the limit cycle of the system and reach the required state of equilibrium level. We have established the optimal harvesting policy. The boundedness, feasibility of interior equilibria and bionomic equilibrium have been determined. The main observation is that the coefficient of refuge plays an important role in regulating the dynamics of the present system. Moreover, the variation of the coefficient of refuge changes the system from stable to unstable and vice-versa. Some numerical illustrations are given in order to support our analytical and theoretical findings.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92D25 Population dynamics (general)
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34H05 Control problems involving ordinary differential equations

References:

[1] Anderson, T. W., Predator responses, prey refuges, and density-dependent mortality of a marine fish, Ecology, 82, 245-257, (2001)
[2] Birkhoff, G.; Rota, G. C., Ordinary Differential Equations, (1982), Ginn: Ginn, Boston · Zbl 0183.35601
[3] Brauer, F.; Soudak, A. S., Stability regions and transition phenomena for harvested predator-prey systems, J. Math. Biol., 7, 319-337, (1979) · Zbl 0397.92019
[4] Brauer, F.; Soudak, A. S., Stability regions in predator-prey systems with constant prey harvesting, J. Math. Biol., 8, 55-71, (1979) · Zbl 0406.92020
[5] Brauer, F.; Soudak, A. S., Constant rate stocking of predator-prey systems, J. Math. Biol., 11, 1-14, (1981) · Zbl 0448.92020
[6] Brauer, F.; Soudak, A. S., Coexistence properties of some predator-prey systems under constant rate harvesting, J. Math. Biol., 12, 101-114, (1981) · Zbl 0482.92015
[7] Carr, J., Applications of Central Manifold Theory, (1981), Springer-Verlag: Springer-Verlag, NY · Zbl 0464.58001
[8] Clark, C. W., Profit maximization and the extinction of animal species, J. Pol. Econ., 81, 950-961, (1973)
[9] Clark, C. W., Mathematical Bioeconomics: The Optimal Management of Renewable Resources, (1976), Princeton University Press: Princeton University Press, USA · Zbl 0364.90002
[10] Clark, C. W., Mathematical models in the economics of renewable resources, SIAM Rev., 21, 81-99, (1979) · Zbl 0401.90028
[11] Clark, C. W.; De Pree, J. D., A simple linear model for optimal exploitation of renewable resources, J. Appl. Math. Optim., 5, 181-196, (1979) · Zbl 0443.49002
[12] Clark, C. W., Bieconomic Modelling and Fisheries Management, (1985), Wiley: Wiley, NY
[13] Collings, J. B., Bifurcation and stability analysis of temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 57, 63-76, (1995) · Zbl 0810.92024
[14] Cressman, R.; Garay, J., A predator-prey refuge system: Evolutionary stability in ecological systems, Theor. Popul. Biol., 76, 248-257, (2009) · Zbl 1403.92238
[15] Dai, G.; Tang, M., Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58, 193-210, (1998) · Zbl 0916.34034
[16] Freedman, H. I., Deterministic Mathematical Method in Population Ecology, (1980), Marcel Dekker: Marcel Dekker, NY · Zbl 0448.92023
[17] Gard, T.; Hallam, T., Persistence in food webs-Lotka-Volterra food chains, Bull. Math. Biol., 41, 877-891, (1979) · Zbl 0422.92017
[18] González-Olivares, E.; Ramos-Jiliberto, R., Dynamics consequences of prey refuge in a simple model system: More prey and few predators and enhanced stability, Ecol. Model., 166, 135-146, (2003)
[19] González-Olivares, E., González-Yáñez, B. & Becerra-Klix, R. [2012] “Prey refuge use as a function of predator-prey encounters,” Private communication, submitted to Int. J. Biomath.
[20] González-Olivares, E.; González-Yáñez, B.; Becerra-Klix, R.; Ramos-Jiliberto, R., Multiple stable states in a model based on predator-induced defenses, Ecol. Compl., 32, 111-120, (2017)
[21] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, (1983), Springer-Verlag · Zbl 0515.34001
[22] Hale, J., Ordinary Differential Equation, (1989), Klieger Publishing Company: Klieger Publishing Company, Malabar
[23] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Application of Hopf-Bifurcation, (1981), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0474.34002
[24] Hassell, M. P.; May, R. M., Stabitity in insect host-parasite models, J. Anim. Ecol., 42, 693-726, (1973)
[25] Hassell, M. P., The Dynamics of Arthropod Predator-Prey Systems, (1978), Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0429.92018
[26] Hochberg, M. E.; Holt, R. D., Refuge evolution and the population dynamics of coupled of host-parasitoid asssociations, Evol. Ecol., 9, 633-661, (1995)
[27] Holling, C. S., The components of predation as revealed by a study of small mammal predation of European pine sawfly, Canad. Entomol., 91, 293-320, (1959)
[28] Hoy, M. A.; Helle, W.; Sabelis, M. W., Spider Mites: Their Biology, Natural Enemies and Control, 1B, Almonds: Integrated mite management for California almond orchards, 229-310, (1985), Elsevier: Elsevier, Amsterdam
[29] Huang, Y.; Chen, F.; Zhong, L., Stability analysis of prey-predator model with Holling type-III response function incorporating a prey refuge, Appl. Math. Comput., 182, 672-683, (2006) · Zbl 1102.92056
[30] Kar, T. K., Modelling and analysis of a harvested prey-preydator system incorporating a prey refuge, J. Comput. Appl. Math., 185, 19-33, (2006) · Zbl 1071.92041
[31] Kot, M., Elements of mathematical ecology, Acta Biotheoretica, 50, 205-207, (2001)
[32] Krivan, V., Effect of optimal antipredator behaviour of prey on predator-prey dynamics: The role of refuge, Theor. Popul. Biol., 53, 131-142, (1998) · Zbl 0945.92021
[33] Kuznetsov, Y., Elements of Applied Bifurcation Theory, (2004), Springer · Zbl 1082.37002
[34] Ma, Z.; Li, W.; Zhao, Y.; Wang, W.; Zhang, H.; Li, Z., Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci., 218, 73-79, (2009) · Zbl 1160.92043
[35] Magalhaes, S.; van Rijn, P. C. J.; Montserrat, M.; Pallini, A.; Sabelis, M. W., Population dynamics of thrips prey and their mite predators in a refuge, Oecologia, 150, 557-568, (2007)
[36] McNair, J. N., The effect of refuge on prey-predator interactions: A reconsideration, Theor. Popul. Biol., 29, 38-63, (1986) · Zbl 0594.92017
[37] Mesterton-Gibbon, M., A technique for finding optimal two species harvesting policies, Ecol. Model., 92, 235-244, (1996)
[38] Mukherjee, D., The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey, Nonlin. Anal.: Real World Appl., 31, 277-287, (2016) · Zbl 1354.34087
[39] Perko, L., Differential Equations and Dynamical Systems, (2001), Springer: Springer, NY · Zbl 0973.34001
[40] Pontryagin, L. S.; Boltyanskii, V. S.; Gamkrelidze, R. V.; Mishchencko, E. F., The Mathematical Theory of Optimal Processes, (1962), Wiley: Wiley, NY · Zbl 0102.32001
[41] Rudolf, V. H. W.; Armstrong, J., Emergent impacts of cannibalism and size refuges in prey on intraguild predation systems, Oecologia, 157, 675-686, (2008)
[42] Ruxton, G. D., Short term refuge use and stability of predator-prey model, Theor. Popul. Biol., 47, 1-17, (1995) · Zbl 0812.92023
[43] Sarwardi, S.; Mandal, P. K.; Ray, S., Analysis of a competitive prey-predator system with a prey refuge, Biosystems, 110, 133-148, (2012)
[44] Sarwardi, S.; Mandal, P. K.; Ray, S., Dynamical behaviour of a two-predator model with prey refuge, J. Biol. Phys., 39, 701-722, (2013)
[45] Sen, M.; Srinivasu, P. D. N.; Banerjee, M., Global dynamics of an additional food provided predator-prey system with constant harvest in predators, Appl. Math. Comput., 250, 193-211, (2015) · Zbl 1328.37059
[46] Sih, A., Prey refuge and predator-prey stability, Theor. Popul. Biol., 31, 1-12, (1987)
[47] Smith, M., Models in Ecology, (1974), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0312.92001
[48] Solow, R. M., The economics of resources or the resources of economics’, Am. Econ. Rev., 64, 1-14, (1974)
[49] Sotomayor, J.; Peixoto, M. M., Generic Bifurcations of Dynamical Systems. In Dynamical Systems, 549-560, (1973), Academic Press: Academic Press, NY
[50] Taylor, R. I., Predation, (1984), Chapman and Hall: Chapman and Hall, NY
[51] Wiggns, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, (2003), Springer · Zbl 1027.37002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.