×

An efficient symmetric finite volume element method for second-order variable coefficient parabolic integro-differential equations. (English) Zbl 1463.65348

Summary: This paper is devoted to develop a symmetric finite volume element (FVE) method to solve second-order variable coefficient parabolic integro-differential equations, arising in modeling of nonlocal reactive flows in porous media. Based on barycenter dual mesh, one semi-discrete and two fully discrete backward Euler and Crank-Nicolson symmetric FVE schemes are presented. Then, the optimal order error estimates in \(L^2\)-norm are derived for the semi-discrete and two fully discrete schemes. Numerical experiments are performed to examine the convergence rate and verify the effectiveness and usefulness of the new numerical schemes.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35R09 Integro-partial differential equations
65N15 Error bounds for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
65N06 Finite difference methods for boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Bank, RE; Rose, DJ, Some error estimates for the box method, SIAM J Numer Anal, 24, 4, 777-787 (1987) · Zbl 0634.65105
[2] Chou, SH; Li, Q., Error estimates in \(L^2, H^1\) and \(L^{\infty }\) in covolume methods for elliptic and parabolic problems, Math Comput, 69, 229, 103-120 (1999) · Zbl 0936.65127
[3] Cushman, JH, Nonlocal dispersion in media with continuously evolving scales of heterogeneity, Transport Porous Media, 13, 1, 123-138 (1993)
[4] Cushman, JH; Hu, X.; Deng, F., Nonlocal reactive transport with physical and chemical heterogeneity: localization errors, Water Resour Res, 31, 9, 2219-2237 (1995)
[5] Dai, XY; Zhang, Y.; Zhou, AH, Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions, Sci China Math, 5, 8, 1401-1414 (2008) · Zbl 1167.65064
[6] Du, YW; Li, YH; Sheng, ZQ, Quadratic finite volume method for a nonlinear elliptic problem, Adv Appl Math Mech, 11, 4, 838-869 (2019) · Zbl 1488.65568
[7] Ewing, RE; Lazarov, RD; Lin, YP, Finite volume element approximations of nonlocal reactive flows in porous media, Numer Methods Partial Differ Equ, 16, 3, 285-311 (2000) · Zbl 0961.76050
[8] Ewing, RE; Lin, YP; Wang, J., A numerical approximation of nonfickian flows with mixing length growth in porous media, Acta Math Univ Comenian, 70, 1, 75-84 (2001) · Zbl 1007.76036
[9] Ewing, RE; Lin, T.; Lin, YP, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J Numer Anal, 39, 6, 1865-1888 (2002) · Zbl 1036.65084
[10] Gan, XT; Yin, JF, Symmetric finite volume method for second order variable coefficient hyperbolic equations, Appl Math Comput, 268, 19, 1015-1028 (2015) · Zbl 1410.65341
[11] Gan, XT; Yin, JF, Symmetric finite volume element approximations of second order linear hyperbolic integro-differential equations, Comput Math Appl, 70, 10, 2589-2600 (2015) · Zbl 1443.65158
[12] Gao, YL; Liang, D.; Li, YH, Optimal weighted upwind finite volume method for convection-diffusion equations in 2D, J Comput Appl Math, 359, 73-87 (2019) · Zbl 1418.65159
[13] Hou, TL; Chen, LP; Yang, Y., Two-grid methods for expanded mixed finite element approximations of semi-linear parabolic integro-differential equations, Appl Numer Math, 132, 10, 163-181 (2018) · Zbl 1395.65077
[14] Huang, JG; Xi, ST, On the finite volume element method for general self adjoint elliptic problems, SIAM J Numer Anal, 35, 5, 1762-1774 (1998) · Zbl 0913.65097
[15] Huang, CS; Hung, CH; Wang, S., A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77, 3, 297-320 (2006) · Zbl 1136.91441
[16] Huang, CS; Hung, CH; Wang, S., On convergence of a fitted finite-volume method for the valuation of options on assets with stochastic volatilities, IMA J Numer Anal, 30, 4, 1101-1120 (2010) · Zbl 1201.91198
[17] Li RH, Chen ZY, Wu W (2000) Generalized difference methods for differential equations. Numerical analysis of finite volume methods. Marcel Dekker, New York · Zbl 0940.65125
[18] Li, Y.; Lin, J.; Yang, M., Finite volume element methods: an overview on recent developments, Int J Numer Anal Model Ser B, 14, 4, 14-34 (2013) · Zbl 1463.65349
[19] Liang, DS; Ma, XL; Zhou, AH, Finite volume methods for eigenvalue problems, BIT, 41, 2, 345-363 (2000) · Zbl 0983.65124
[20] Liang, DS; Ma, XL; Zhou, AH, A Symmetric finite volume scheme for self adjoint elliptic problems, J Comput Appl Math, 147, 1, 121-136 (2002) · Zbl 1027.65150
[21] Lv, JL; Li, YH, Optimal biquadratic finite volume element methods on quadrilateral meshes, SIAM J Numer Anal, 50, 5, 2379-2399 (2012) · Zbl 1263.65117
[22] Ma, XL; Shu, S.; Zhou, AH, Symmetric finite volume discretization for parabolic problems, Comput Methods Appl Mech Eng, 192, 39, 4467-4485 (2003) · Zbl 1038.65079
[23] Nie, CY; Tan, M., A symmetric finite volume element scheme on tetrahedron grids, J Korean Math Soc, 49, 4, 765-778 (2012) · Zbl 1247.65140
[24] Pani, AK; Peterson, TE, Finite element methods with numerical quadrature for parabolic intero-differential equations, SIAM J Numer Anal, 33, 3, 1084-1105 (1996) · Zbl 0858.65141
[25] Pani, AK; Thomee, V.; Wahlbin, LB, Numerical methods for hyperbolic and parabolic integro-differential equations, J Integral Equ Appl, 4, 4, 533-584 (1992) · Zbl 0764.65086
[26] Reddy, GMM; Sinha, RK; Cuminato, JA, A posteriori error analysis of the Crank-Nicolson finite element method for parabolic integro-differential equations, J Sci Comput, 79, 414-441 (2019) · Zbl 1419.65069
[27] Renardy M, Hrusa W, Nohel J (1987) Mathematical problems in viscoelasticity. In: Pitman. Mono. Survey. Pure. Appl. Math., Wiley, New York · Zbl 0719.73013
[28] Rui, HX, Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems, J Comput Appl Math, 146, 2, 373-386 (2002) · Zbl 1020.65066
[29] Shu, S.; Yu, HY; Huang, YQ; Nie, CY, A symmetric finite volume element scheme on quadrilateral grids and superconvergences, Int J Numer Anal Model, 3, 3, 348-360 (2006) · Zbl 1100.65102
[30] Sinha, RK; Ewing, RE; Lazarov, RD, Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data, SIAM J Numer Anal, 43, 6, 2320-2344 (2006) · Zbl 1106.65121
[31] Wang, X.; Li, YH, \(L^2\) error estimates for high order finite volume methods on triangular meshes, SIAM J Numer Anal, 54, 5, 2729-2749 (2016) · Zbl 1348.65155
[32] Wang, X.; Li, YH, Superconvergence of quadratic finite volume method on triangular meshes, J Comput Appl Math, 348, 181-199 (2019) · Zbl 1404.65229
[33] Wang, X.; Huang, WZ; Li, YH, Conditioning of the finite volume element method for diffusion problems with general simplicial meshes, Math Comput, 88, 320, 2665-2696 (2019) · Zbl 1433.65256
[34] Yang, Q., Symmetric modified finite volume element methods for parabolic integro-differential equations, Chin J Eng Math, 25, 3, 520-530 (2008) · Zbl 1174.65563
[35] Yang, M.; Yuan, YR, A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems, J Comput Appl Math, 200, 2, 677-700 (2007) · Zbl 1121.65103
[36] Yin, Z.; Rui, HX, Symmetric modified finite volume element methods for nonlinear parabolic problems, Chin J Eng Math, 23, 3, 530-536 (2006) · Zbl 1115.65364
[37] Yin, Z.; Xu, Q., A fully discrete symmetric finite volume element approximation of nonlocal reactive flows in porous media, Math Probl Eng, 2013, 1-7 (2013) · Zbl 1296.76097
[38] Zhang, T., Finite element methods for partial differentio-integral equations (2009), Beijing: Science Press, Beijing
[39] Zhu, AL; Xu, TT; Xu, Q., Weak Galerkin finite element methods for linear parabolic integro-differential equations, Numer Methods Partial Differ Equ, 32, 5, 1357-1377 (2016) · Zbl 1354.65283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.