×

Weak Galerkin finite element methods for linear parabolic integro-differential equations. (English) Zbl 1354.65283

This paper deals with the linear parabolic integro-differential problem \[ u_t(\mathbf{x},t)-\nabla\cdot(A\nabla u(\mathbf{x},t))-\int\limits_{0}^{t} \nabla\cdot(B\nabla u(\mathbf{x},\tau))d\tau=f(\mathbf{x},t), \; (\mathbf{x},t)\in\Omega\times(0,T], \]
\[ u=g(\mathbf{x},t), \; (\mathbf{x},t)\in\partial\Omega\times(0,T],\quad u(\mathbf{x},0)=\psi(\mathbf{x}), \; \mathbf{x}\in\Omega, \] where \(\mathbf{x}=(x_1,x_2),\;\Omega\subset \mathbb{R}^2\) is a bounded convex polygonal domain with the boundary \(\partial\Omega\), \(A=[a_{ij}(\mathbf{x},t)]_{2\times 2}\) and \(B=[b_{ij}(\mathbf{x},t)]_{2\times 2}\) are matrix-valued functions defined on \(\Omega\times (0,T]\).
The authors propose the semidiscrete and fully discrete weak Galerkin finite element schemes for this problem. Optimal error estimates are established for the corresponding numerical approximations in both \(L^2\) and \(H^1\) norms. Several illustrative numerical examples are presented in conclusion.

MSC:

65R20 Numerical methods for integral equations
45K05 Integro-partial differential equations
45A05 Linear integral equations
Full Text: DOI

References:

[1] E. G.Yanik and G.Fairweather, Finite element methods for parabolic and hyperbolic partial integro‐differential equations, Nonlinear Anal12 (1988), 785-809. · Zbl 0657.65142
[2] C.Chen, V.Thomée, and L. B.Wahlbin, Finite element approximation of a parabolic integro‐differential equation with a weakly singular kernel, Math Comput58 (1992), 587-602. · Zbl 0766.65120
[3] S.Larsson, V.Thomée, and L. B.Wahlbin, Numerical solution of parabolic integro‐differential equations by the discontinuous Galerkin method, Math Comput67 (1998), 45-71. · Zbl 0896.65090
[4] Y. P.Lin, V.Thomée, and L. B.Wahlbin, Ritz‐Volterra projections to finite‐element spaces and applications to integrodifferential and related equations, SIAM J Numer Anal28 (1991), 1047-1070. · Zbl 0728.65117
[5] A. K.Pani, V.Thomée, and L. B.Wahlbin, Numerical methods for hyperbolic and parabolic integro‐differential equations, J Integral Equations Appl4 (1992), 533-584. · Zbl 0764.65086
[6] I. H.Sloan and V.Thomée, Time discretization of an integro‐differential equation of parabolic type, SIAM J Numer Anal23 (1986), 1052-1061. · Zbl 0608.65096
[7] V.Thomée and L. B.Wahlbin, Long‐time numerical solution of a parabolic equation with memory, Math Comput62 (1994), 477-496. · Zbl 0801.65135
[8] V.Thomée and N. Y.Zhang, Error estimates for semidiscrete finite element methods for parabolic integro‐differential equations, Math Comput53 (1989), 121-139. · Zbl 0673.65099
[9] N. Y.Zhang, On fully discrete Galerkin approximations for partial integro‐differential equations of parabolic type, Math Comput60 (1993), 133-166. · Zbl 0795.65098
[10] Z.Jiang, \( L^\infty ( L^2 )\) and \(L^\infty ( L^\infty )\) error estimates for mixed methods for integro‐differential equations of parabolic type, ESAIM Math Model Numer Anal33 (1999), 531-546. · Zbl 0941.65143
[11] A. K.Pani and G.Fairweather, \( H^1\)‐Galerkin mixed finite element methods for parabolic partial integro‐differential equations, IMA J Numer Anal22 (2002), 231-252. · Zbl 1008.65101
[12] R. K.Sinha, R. E.Ewing, and R. D.Lazarov, Mixed finite element approximations of parabolic integro‐differential equations with nonsmooth initial data, SIAM J Numer Anal47 (2009), 3269-3292. · Zbl 1205.65341
[13] H.Che, Z.Zhou, Z.Jiang, and Y.Wang, \( H^1\)‐Galerkin expanded mixed finite element methods for nonlinear pseudo‐parabolic integro‐differential equations, Numer Methods Partial Differential Equations29 (2013), 799-817. · Zbl 1270.65077
[14] Y.Liu, H.Li, J.Wang, and W.Gao, A new positive definite expanded mixed finite element method for parabolic integrodifferential equations, J Appl Math2012 (2012), 1-24. · Zbl 1251.65140
[15] A.Zhu, Z.Jiang, and Q.Xu, Expanded mixed covolume method for a linear integro‐differential equation of parabolic type (in Chinese), Numer Math J Chinese Univ31 (2009), 193-205. · Zbl 1212.65536
[16] A. K.Pani and S.Yadav, An \(h^p\)‐local discontinuous Galerkin method for parabolic integro‐differential equations, J Sci Comput46 (2011), 71-99. · Zbl 1227.65133
[17] A.Zhu, Discontinuous mixed covolume methods for linear parabolic integrodifferential problems, J Appl Math2014 (2014), 1-8. · Zbl 1442.65401
[18] H.Guo and H.Rui, Crank‐Nicolson least‐squares Galerkin procedures for parabolic integro‐differential equations, Appl Math Comput180 (2006), 622-634. · Zbl 1106.65116
[19] J.Wang and X.Ye, A weak Galerkin finite element method for second‐order elliptic problems, J Comput Appl Math241 (2013), 103-115. · Zbl 1261.65121
[20] Q. H.Li and J.Wang, Weak Galerkin finite element methods for parabolic equations, Numer Methods Partial Differential Equations29 (2013), 2004-2024. · Zbl 1307.65133
[21] L.Mu, J.Wang, G.Wei, X.Ye, and S.Zhao, Weak Galerkin methods for second order elliptic interface problems, J Comput Phys250 (2013), 106-125. · Zbl 1349.65472
[22] L.Mu, J.Wang, and X.Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer Methods Partial Differential Equations30 (2014), 1003-1029. · Zbl 1314.65151
[23] L.Mu, J.Wang, X.Ye, and S.Zhang, A weak Galerkin finite element method for the Maxwell equations, J Sci Comput26 (2014), 363-386. · Zbl 1327.65220
[24] J.Wang and X.Ye, A weak Galerkin finite element method for the Stokes equations, Adv Comput Math42 (2016), 155-174. · Zbl 1382.76178
[25] A.Zhu, Q.Xu, and Z.Jiang, Characteristics weak Galerkin finite element methods for convection‐dominated diffusion problems, Abstr Appl Anal2014 (2014), 1-8. · Zbl 1470.65171
[26] J.Wang and X.Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math Comput83 (2014), 2101-2126. · Zbl 1308.65202
[27] C.Wang and J.Wang, A hybridized weak Galerkin finite element method for the biharmonic equation, Int J Numer Anal Model12 (2015), 302-317. · Zbl 1337.65160
[28] F.Gao and X.Wang, A modified weak Galerkin finite element method for a class of parabolic problems, J Comput Appl Math271 (2014), 1-19. · Zbl 1321.65154
[29] X.Wang, N. S.Malluwawadu, F.Gao, and T. C.McMillan, A modified weak Galerkin finite element method, J Comput Appl Math271 (2014), 319-327. · Zbl 1321.65178
[30] R. A.Adams, Sobolev spaces, Academic Press, New York, 1975. · Zbl 0314.46030
[31] P.Raviart and J.Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Mathematics, Vol. 606, Springer, Berlin, 1977, pp. 292-315. · Zbl 0362.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.