×

Existence and uniqueness of bounded stable solutions to the Peierls-Nabarro model for curved dislocations. (English) Zbl 1462.35437

Summary: We study the well-posedness of the vector-field Peierls-Nabarro model for curved dislocations with a double well potential and a bi-states limit at far field. Using the Dirichlet to Neumann map, the 3D Peierls-Nabarro model is reduced to a nonlocal scalar Ginzburg-Landau equation. We derive an integral formulation of the nonlocal operator, whose kernel is anisotropic and positive when Poisson’s ratio \(\nu \in (-\frac{1}{2}, \frac{1}{3})\). We then prove that any bounded stable solution to this nonlocal scalar Ginzburg-Landau equation has a 1D profile, which corresponds to the PDE version of flatness result for minimal surfaces with anisotropic nonlocal perimeter. Based on this, we finally obtain that steady states to the nonlocal scalar equation, as well as the original Peierls-Nabarro model, can be characterized as a one-parameter family of straight dislocation solutions to a rescaled 1D Ginzburg-Landau equation with the half Laplacian.

MSC:

35R11 Fractional partial differential equations
35Q56 Ginzburg-Landau equations
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations

References:

[1] Bass, RF, Regularity results for stable-like operators, J. Funct. Anal., 257, 8, 2693-2722 (2009) · Zbl 1177.45013 · doi:10.1016/j.jfa.2009.05.012
[2] Cabré, X.; Sire, Y., Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions, Trans. Am. Math. Soc., 367, 911-941 (2015) · Zbl 1317.35280 · doi:10.1090/S0002-9947-2014-05906-0
[3] Cabré, X.; Cinti, E., Energy estimates and 1-D symmetry for nonlinear equations involving the half-laplacian, Discrete Continuous Dyn. Syst. A, 28, 3, 1179-1206 (2010) · Zbl 1193.35242 · doi:10.3934/dcds.2010.28.1179
[4] Cabré, X.; Cinti, E., Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial. Differ. Equ., 49, 1-2, 233-269 (2014) · Zbl 1282.35399 · doi:10.1007/s00526-012-0580-6
[5] Cabré, X.; Solà-Morales, J., Layer solutions in a half-space for boundary reactions, Commun. Pure Appl. Math., 58, 12, 1678-1732 (2005) · Zbl 1102.35034 · doi:10.1002/cpa.20093
[6] Cinti, E.; Serra, J.; Valdinoci, E., Quantitative flatness results and \(BV\)-estimates for stable nonlocal minimal surfaces, J. Differ. Geom., 112, 3, 447-504 (2019) · Zbl 1420.53014 · doi:10.4310/jdg/1563242471
[7] Dipierro, S., Serra, J., Valdinoci, E.: Nonlocal phase transitions: rigidity results and anisotropic geometry (2016). arXiv preprint arXiv:1611.03246 · Zbl 1440.35342
[8] Dipierro, S.; Serra, J.; Valdinoci, E., Improvement of flatness for nonlocal phase transitions, Am. J. Math., 142, 4, 1083-1160 (2020) · Zbl 1445.35302 · doi:10.1353/ajm.2020.0032
[9] Dong, H.; Kim, D., Schauder estimates for a class of non-local elliptic equations, Discrete Continuous Dyn. Syst. A, 33, 6, 2319-2347 (2013) · Zbl 1263.45008 · doi:10.3934/dcds.2013.33.2319
[10] Figalli, A.; Serra, J., On stable solutions for boundary reactions: a De Giorgi-type result in dimension 4 + 1, Inventiones Math., 219, 1, 153-177 (2020) · Zbl 1441.35254 · doi:10.1007/s00222-019-00904-2
[11] Gao, Y.; Liu, J-G, Long time behavior of dynamic solution to Peierls-Nabarro dislocation model, Methods Appl. Anal., 27, 2, 161-198 (2020) · Zbl 1448.35044
[12] Gao, Y., Liu, J.-G., Luo, T., Xiang, Y.: Revisit of the Peierls-Nabarro model for edge dislocations in hilbert space. To appear in Discrete & Continuous Dynamical Systems - B. doi:10.3934/dcdsb.2020224 · Zbl 1471.35268
[13] Gui, C.; Li, Q., Some energy estimates for stable solutions to fractional Allen-Cahn equations, Calc. Var. Partial. Differ. Equ., 59, 2, 49 (2020) · Zbl 1431.35227 · doi:10.1007/s00526-020-1701-2
[14] Hirth, JP; Lothe, J., Theory of Dislocations (1982), New York: Wiley, New York · Zbl 1365.82001
[15] Nabarro, FRN, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59, 256-272 (1947) · doi:10.1088/0959-5309/59/2/309
[16] Palatucci, G.; Savin, O.; Valdinoci, E., Local and global minimizers for a variational energy involving a fractional norm, Annali di Matematica, 192, 4, 673-718 (2013) · Zbl 1278.82022 · doi:10.1007/s10231-011-0243-9
[17] Peierls, R., The size of a dislocation, Proc. Phys. Soc., 52, 34-37 (1940) · doi:10.1088/0959-5309/52/1/305
[18] Savin, O., Rigidity of minimizers in nonlocal phase transitions, Anal. PDE, 11, 8, 1881-1900 (2018) · Zbl 1391.35145 · doi:10.2140/apde.2018.11.1881
[19] Xiang, Y.; Wei, H.; Ming, P.; Weinan, E., A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in al and cu, Acta Mater., 56, 1447-1460 (2008) · doi:10.1016/j.actamat.2007.11.033
[20] Xiang, Y., Modeling dislocations at different scales, Commun. Comput. Phys., 1, 3, 383-424 (2006) · Zbl 1115.74307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.