×

On stable solutions for boundary reactions: a De Giorgi-type result in dimension \(4 + 1\). (English) Zbl 1441.35254

If \(E=\{x_d>h(x_1,\dots,x_{d-1});\ h:\mathbb{R}^{d-1}\to\mathbb{R}\}\), then \(\partial E\) is a minimal surface, and \(h\) is affine, or equivalently, \(E\) is a halfspace for \(d\le 8\). In [Proc. Int. Meet., Rome 1978, 131–188 (1979; Zbl 0405.49001)], E. De Giorgi published his famous conjecture stating that if \(u\in C^2(\mathbb{R}^d)\) is a solution of the Allen-Cahn equation \((*)\,-\Delta u=u-u^3\), \(|u|\le 1\), satisfying \(\partial_{x_d}u>0\), then all level sets \(\{u=\lambda\}\) of \(u\) must be hyperplanes for \(d\le 8\). A solution function \(u\) is said to be a 1D profile if \(u(x)=\varphi(e\cdot x)\) for some \(e\in\mathbb{S}^2\), where \(\varphi:\mathbb{R}\to\mathbb{R}\) is a nondecreasing bounded stable solution in dimension one. Conjecture was proved by N. Ghoussoub and C. Gui in [Math. Ann. 311, No. 3, 481–491 (1998; Zbl 0918.35046)] for \(d=2\), and by L. Ambrosio and X. Cabré in [J. Am. Math. Soc. 13, No. 4, 725–739 (2000; Zbl 0968.35041)] for \(d=3\). In [Ann. Math. (2) 169, No. 1, 41–78 (2009; Zbl 1180.35499)], O. Savin proved the conjecture for \(4\le d\le 8\) under the additional condition that \(\lim\limits_{x_d\to\pm\infty} u=\pm1\). It turns out that the De Giorgi conjuncture is still valid if \(-\Delta\) in \((*)\) is replaced with \((-\Delta)^{1/2}\) to form the fractional Allen-Cahn equation \((**)\,(-\Delta)^{1/2} u=u-u^3\), \(|u|\le 1\). More general form of De Giorgi conjuncture is SDG Conjuncture stating that if \(u\in C^2(\mathbb{R}^d)\) is a stable solution of \((*)\) or \((***)\, (-\Delta)^{1/2} u+f(u)=0\), then all level sets \(\{u=\lambda\}\) of \(u\) must be hyperplanes for \(d\le 7\). Also, the validity of this conjuncture implies both previous conjunctures. The SDG conjuncture was proven only for \(d=2\) by H. Berestycki et al. in [Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25, No. 1–2, 69–94 (1997; Zbl 1079.35513)] for \((*)\), and by X. Cabré and J. Solá-Morales in [Commun. Pure Appl. Math. 58, No. 12, 1678–1732 (2005; Zbl 1102.35034)] for \((***)\).
The goal of this paper is to prove this conjuncture for \(d=3\). The author proves that if \(u\) is a bounded stable solution of \((***)\) with \(d=3\), and \(f\in C^{0,\alpha}\) for some \(\alpha>0\), then \(u\) is 1D profile. As a corollary of this result it is shown that if \(f(u)=u^3-u\), then the conjuncture with \((**)\) is true for \(d=4\). Also, as a critical ingredient of the proof is the general energy estimate, which holds in every dimension \(d\ge 2\). The author shows that if \(R\ge 1\), \(M_0\ge 2\), \(\alpha\in(0,1)\), \(u\) is a stable solution of \((***)\) in \(B_R\subset\mathbb{R}^d\), and \(f:[-1,1]\to\mathbb{R}\) satisfies \(\|f\|_{C^{0,\alpha}([-1,1])}\le M_0\), then there exists a constant \(C>0\), depending only on \(d\) and \(\alpha\), such that \[ \int\limits_{B_{R/2}}|\nabla u|\le CR^{d-1}\log(M_0R) \] and \[ \iint\limits_{\mathbb{R}^d\times\mathbb{R}^d\setminus B^c_{R/2}\times B^c_{R/2}}\frac{|u(x)-u(y)|^2}{|x-y|^{d+1}}dxdy\le CR^{d-1}\log^2(M_0R) \]

MSC:

35R11 Fractional partial differential equations
35J61 Semilinear elliptic equations
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)

References:

[1] Alberti, G.; Bouchitté, G.; Seppecher, S., Phase transition with the line-tension effect, Arch. Rational Mech. Anal., 144, 1-46 (1998) · Zbl 0915.76093 · doi:10.1007/s002050050111
[2] Alberti, G.; Ambrosio, L.; Cabré, X., On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday, Acta Appl. Math., 65, 9-33 (2001) · Zbl 1121.35312 · doi:10.1023/A:1010602715526
[3] Ambrosio, L.; Cabré, X., Entire solutions of semilinear elliptic equations in \(\mathbb{R}^3\) and a conjecture of De Giorgi, J. Am. Math. Soc., 13, 725-739 (2000) · Zbl 0968.35041 · doi:10.1090/S0894-0347-00-00345-3
[4] Berestycki, H.; Caffarelli, L.; Nirenberg, L., Further qualitative properties for elliptic equations in unbounded domains, dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25, 69-94 (1997) · Zbl 1079.35513
[5] Bombieri, E.; De Giorgi, E.; Giusti, E., Minimal cones and the Bernstein problem, Invent. Math., 7, 243-268 (1969) · Zbl 0183.25901 · doi:10.1007/BF01404309
[6] Cabré, X.; Cinti, E., Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian, Discrete Contin. Dyn. Syst., 28, 1179-1206 (2010) · Zbl 1193.35242 · doi:10.3934/dcds.2010.28.1179
[7] Cabré, X., Cinti, E., Serra, J.: Stable nonlocal phase transitions (preprint) · Zbl 1455.53030
[8] Cabré, X.; Solá, J., Morales, Layer solutions in a half-space for boundary reactions, Commun. Pure Appl. Math., 58, 1678-1732 (2005) · Zbl 1102.35034 · doi:10.1002/cpa.20093
[9] Caffarelli, L.; Cordoba, A., Uniform convergence of a singular perturbation problem, Commun. Pure Appl. Math., 48, 1-12 (1995) · Zbl 0829.49013 · doi:10.1002/cpa.3160480101
[10] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[11] Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates (preprint). arXiv:1803.02716 · Zbl 1431.49045
[12] Cinti, E.; Serra, J.; Valdinoci, E., Quantitative flatness results and \(BV\)-estimates for stable nonlocal minimal surfaces, J. Diff. Geom., 112, 3, 447-504 (2019) · Zbl 1420.53014 · doi:10.4310/jdg/1563242471
[13] Dávila, J.; Del Pino, M.; Musso, M., Bistable boundary reactions in two dimensions, Arch. Ration. Mech. Anal., 200, 1, 89-140 (2011) · Zbl 1236.35074 · doi:10.1007/s00205-010-0337-3
[14] de Giorgi, E.: Frontiere orientate di misura minima (Italian), Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61 Editrice Tecnico Scientifica, Pisa (1961)
[15] De Giorgi, E., Una estensione del teorema di Bernstein (Italian), Ann. Scuola Norm. Sup. Pisa (3), 19, 79-85 (1965) · Zbl 0168.09802
[16] de Giorgi, E.: Convergence problems for functionals and operators. In: Proceedings of Interantional Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188 · Zbl 0405.49001
[17] Guaraco, Mam, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differ. Geom., 108, 1, 91-133 (2018) · Zbl 1387.49060 · doi:10.4310/jdg/1513998031
[18] Guaraco, Mam; Gaspar, P., The Weyl Law for the phase transition spectrum and density of limit interfaces, Geom. Funct. Anal., 29, 2, 382-410 (2019) · Zbl 1416.53009 · doi:10.1007/s00039-019-00489-1
[19] Del Pino, M.; Kowalczyk, M.; Wei, J., A conjecture by de Giorgi in large dimensions, Ann. Math., 174, 1485-1569 (2011) · Zbl 1238.35019 · doi:10.4007/annals.2011.174.3.3
[20] Do Carmo, M.; Peng, Ck, Stable complete minimal surfaces in \(\mathbb{R}^3\) are planes, Bull. Am. Math. Soc. (N.S.), 1, 903-906 (1979) · Zbl 0442.53013 · doi:10.1090/S0273-0979-1979-14689-5
[21] Figalli, A.; Jerison, D., How to recognize convexity of a set from its marginals, J. Funct. Anal., 266, 3, 1685-1701 (2014) · Zbl 1294.26022 · doi:10.1016/j.jfa.2013.05.040
[22] Fischer-Colbrie, D.; Schoen, R., The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Commun. Pure Appl. Math., 33, 199-211 (1980) · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[23] Ghoussoub, N.; Gui, C., On a conjecture of De Giorgi and some related problems, Math. Ann., 311, 481-491 (1998) · Zbl 0918.35046 · doi:10.1007/s002080050196
[24] Garroni, A.; Müller, S., \( \Gamma \)-limit of a phase-field model of dislocation, SIAM J. Math. Anal., 36, 6, 1943-1964 (2005) · Zbl 1094.82008 · doi:10.1137/S003614100343768X
[25] Irie, K.; Marques, Fc; Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math. (2), 187, 3, 963-972 (2018) · Zbl 1387.53083 · doi:10.4007/annals.2018.187.3.8
[26] Kurzke, M., Boundary vortices in thin magnetic films, Calc. Var. Partial Differ. Equ., 26, 1, 1-28 (2006) · Zbl 1151.35006 · doi:10.1007/s00526-005-0331-z
[27] González, Mdm, Gamma convergence of an energy functional related to the fractional Laplacian, Calc. Var. Part. Differ. Eq., 36, 173-210 (2009) · Zbl 1175.49013 · doi:10.1007/s00526-009-0225-6
[28] Modica, L.: \( \Gamma \)-convergence to minimal surfaces problems and global solutions of \(\Delta u = 2(u^3-u)\). In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 223—244. Pitagora, Bologna, 1979 · Zbl 0408.49041
[29] Modica, L.; Mortola, S., Un esempio di \(\Gamma \)-convergenza (Italian), Boll. Un. Mat. Ital. B (5), 14, 285-299 (1977) · Zbl 0356.49008
[30] Nabarro, Frn, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59, 256-272 (1947) · doi:10.1088/0959-5309/59/2/309
[31] Peierls, R., The size of a dislocation, Proc. Phys. Soc., 52, 34-37 (1940) · doi:10.1088/0959-5309/52/1/305
[32] Savin, O., Regularity of flat level sets in phase transitions, Ann. Math. (2), 169, 41-78 (2009) · Zbl 1180.35499 · doi:10.4007/annals.2009.169.41
[33] Savin, O., Rigidity of minimizers in nonlocal phase transitions, Anal. PDE, 11, 8, 1881-1900 (2018) · Zbl 1391.35145 · doi:10.2140/apde.2018.11.1881
[34] Savin, O., Rigidity of minimizers in nonlocal phase transitions II, Anal. Theory Appl., 35, 1, 1-27 (2019) · Zbl 1438.35169 · doi:10.4208/ata.OA-0008
[35] Savin, O.; Valdinoci, E., Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differ. Equ., 48, 33-39 (2013) · Zbl 1275.35065 · doi:10.1007/s00526-012-0539-7
[36] Savin, O.; Valdinoci, E., Density estimates for a variational model driven by the Gagliardo norm, J. Math. Pures Appl., 101, 1-26 (2014) · Zbl 1278.49016 · doi:10.1016/j.matpur.2013.05.001
[37] Savin, O.; Valdinoci, E., Some monotonicity results for minimizers in the calculus of variations, J. Funct. Anal., 264, 2469-2496 (2013) · Zbl 1278.49029 · doi:10.1016/j.jfa.2013.02.005
[38] Simon, L., Schauder estimates by scaling, Calc. Var. Partial Differ. Equ., 5, 391-407 (1997) · Zbl 0946.35017 · doi:10.1007/s005260050072
[39] Simons, J., Minimal varieties in Riemannian manifolds, Ann. Math., 88, 62-105 (1968) · Zbl 0181.49702 · doi:10.2307/1970556
[40] Toland, Jf, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145, 136-150 (1997) · Zbl 0876.35106 · doi:10.1006/jfan.1996.3016
[41] Wang, K.; Wei, J., Finite Morse index implies finite ends, Commun. Pure Appl. Math., 72, 5, 1044-1119 (2019) · Zbl 1418.35190 · doi:10.1002/cpa.21812
[42] White, B., Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math., 88, 24-256 (1987) · Zbl 0615.53044 · doi:10.1007/BF01388908
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.