×

The Bi-Laplacian with Wentzell boundary conditions on Lipschitz domains. (English) Zbl 1462.35164

Summary: We investigate the Bi-Laplacian with Wentzell boundary conditions in a bounded domain \(\Omega\subseteq\mathbb{R}^d\) with Lipschitz boundary \(\Gamma\). More precisely, using form methods, we show that the associated operator on the ground space \(L^2(\Omega)\times L^2(\Gamma)\) has compact resolvent and generates a holomorphic and strongly continuous real semigroup of self-adjoint operators. Furthermore, we give a full characterization of the domain in terms of Sobolev spaces, also proving Hölder regularity of solutions, allowing classical interpretation of the boundary condition. Finally, we investigate spectrum and asymptotic behavior of the semigroup, as well as eventual positivity.

MSC:

35K35 Initial-boundary value problems for higher-order parabolic equations
47A07 Forms (bilinear, sesquilinear, multilinear)
47D06 One-parameter semigroups and linear evolution equations
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, (2003) · Zbl 1098.46001
[2] Arendt, W.; Metafune, G.; Pallara, D.; Romanelli, S., The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67, 2, 247-261 (2003) · Zbl 1073.47045 · doi:10.1007/s00233-002-0010-8
[3] Behrndt, J.; Hassi, S.; de Snoo, H., Boundary Value Problems, Weyl Functions, and Differential Operators, Monographs in Mathematics (2020), Cham: Birkhäuser/Springer, Cham · Zbl 1457.47001 · doi:10.1007/978-3-030-36714-5
[4] Coffman, CV, On the structure of solutions \(\Delta^2u=\lambda u\) which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal., 13, 5, 746-757 (1982) · Zbl 0498.73010 · doi:10.1137/0513051
[5] Costabel, M., On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr., 292, 10, 2165-2173 (2019) · Zbl 1432.35035 · doi:10.1002/mana.201800077
[6] Daners, D., Glück, J.: A criterion for the uniform eventual positivity of operator semigroups. Integr. Equ. Oper. Theory, 90(4):Paper No. 46, 19, (2018) · Zbl 06946542
[7] Daners, D.; Glück, J.; Kennedy, JB, Eventually and asymptotically positive semigroups on Banach lattices, J. Diff. Equ., 261, 5, 2607-2649 (2016) · Zbl 1380.47036 · doi:10.1016/j.jde.2016.05.007
[8] Daners, D.; Glück, J.; Kennedy, JB, Eventually positive semigroups of linear operators, J. Math. Anal. Appl., 433, 2, 1561-1593 (2016) · Zbl 1339.47057 · doi:10.1016/j.jmaa.2015.08.050
[9] Denk, R.; Prüss, J.; Zacher, R., Maximal \(L_p\)-regularity of parabolic problems with boundary dynamics of relaxation type, J. Funct. Anal., 255, 11, 3149-3187 (2008) · Zbl 1160.35030 · doi:10.1016/j.jfa.2008.07.012
[10] Díaz, JI; Tello, L., On a climate model with a dynamic nonlinear diffusive boundary condition, Discrete Contin. Dyn. Syst. Ser. S, 1, 2, 253-262 (2008) · Zbl 1161.35039
[11] Engel, K-J; Fragnelli, G., Analyticity of semigroups generated by operators with generalized Wentzell boundary conditions, Adv. Diff. Equ., 10, 11, 1301-1320 (2005) · Zbl 1108.47039
[12] Escher, J.; Prüss, J.; Simonett, G., Analytic solutions for a Stefan problem with Gibbs-Thomson correction, J. Reine Angew. Math., 563, 1-52 (2003) · Zbl 1242.35220 · doi:10.1515/crll.2003.082
[13] Favini, A.; Goldstein, GR; Goldstein, JA; Romanelli, S., Fourth order operators with general Wentzell boundary conditions, Rocky Mountain J. Math., 38, 2, 445-460 (2008) · Zbl 1195.35108 · doi:10.1216/RMJ-2008-38-2-445
[14] Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems, volume 1991 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains · Zbl 1239.35002
[15] Gesztesy, F., Mitrea, M.: Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains. In: Perspectives in partial differential equations, harmonic analysis and applications, volume 79 of Proc. Sympos. Pure Math., pp. 105-173. Amer. Math. Soc., Providence, RI, (2008) · Zbl 1178.35147
[16] Gesztesy, F.; Mitrea, M., A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains, J. Anal. Math., 113, 53-172 (2011) · Zbl 1231.47044 · doi:10.1007/s11854-011-0002-2
[17] Gregorio, F.; Mugnolo, D., Bi-Laplacians on graphs and networks, J. Evol. Equ., 20, 1, 191-232 (2020) · Zbl 1437.35424 · doi:10.1007/s00028-019-00523-7
[18] Gregorio, F., Mugnolo, D.: Higher-order operators on networks: hyperbolic and parabolic theory. Integr. Eqn. Oper. Theory, 92(6), (2020) · Zbl 1437.35424
[19] Goldstein, GR, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Equ., 11, 4, 457-480 (2006) · Zbl 1107.35010
[20] Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition · Zbl 0836.47009
[21] Lions, J-L; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (1972), New York: Springer, New York · Zbl 0223.35039 · doi:10.1007/978-3-642-65217-2
[22] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[23] Miyajima, S.; Okazawa, N., Generators of positive \(C_0\)-semigroups, Pacific J. Math., 125, 1, 161-176 (1986) · Zbl 0615.47031 · doi:10.2140/pjm.1986.125.161
[24] Nittka, R.: Elliptic and parabolic problems with Robin boundary conditions on Lipschitz domains. PhD thesis, Universität Ulm, (2010)
[25] Nittka, R., Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains, J. Diff. Equ., 251, 4-5, 860-880 (2011) · Zbl 1225.35077 · doi:10.1016/j.jde.2011.05.019
[26] Ouhabaz, EM, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series (2005), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1082.35003
[27] Prüss, J.; Racke, R.; Zheng, S., Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl. (4), 185, 4, 627-648 (2006) · Zbl 1232.35081 · doi:10.1007/s10231-005-0175-3
[28] Racke, R.; Zheng, S., The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Diff. Equ., 8, 1, 83-110 (2003) · Zbl 1035.35050
[29] Simon, B., A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal., 28, 3, 377-385 (1978) · Zbl 0413.47029 · doi:10.1016/0022-1236(78)90094-0
[30] Sweers, G.: When is the first eigenfunction for the clamped plate equation of fixed sign? In Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), volume 6 of Electron. J. Differ. Equ. Conf., pp. 285-296. Southwest Texas State Univ., San Marcos, TX, (2001) · Zbl 0963.35049
[31] Sweers, G., A survey on boundary conditions for the biharmonic, Complex Var. Elliptic Equ., 54, 2, 79-93 (2009) · Zbl 1171.35034 · doi:10.1080/17476930802657640
[32] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (1995), Heidelberg: Johann Ambrosius Barth, Heidelberg · Zbl 0830.46028
[33] Warma, M., Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains, Commun. Pure Appl. Anal., 12, 5, 1881-1905 (2013) · Zbl 1268.35031 · doi:10.3934/cpaa.2013.12.1881
[34] Weidmann, J., Linear Operators in Hilbert spaces, Graduate Texts in Mathematics (1980), New York: Springer, New York · Zbl 0434.47001 · doi:10.1007/978-1-4612-6027-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.