×

Fourth order operators with general Wentzell boundary conditions. (English) Zbl 1195.35108

Summary: Let \(\Omega\) be a bounded subset of \(\mathbb R^N\) with smooth boundary \(\partial\Omega\) in \(C^4\), \(a\in C^4(\overline{\Omega})\) with \(a>0\) in \(\overline{\Omega}\), and let \(A\) be the fourth-order operator defined by \(Au:= \Delta(a\Delta u)\), respectively, \(Au:= B^2u\), where \(Bu:=\nabla\cdot (a\nabla u))\), with general Wentzell boundary condition of the type
\[ \begin{aligned} &Au+\beta \frac{\partial(a\Delta u)}{\partial n}+\gamma u=0 \quad\text{on }\partial\Omega,\\ \bigg(\text{respectively}\quad &Au+\beta\frac{\partial(Bu)}{\partial n}+ \gamma u=0 \quad\text{ on }\partial\Omega\bigg). \end{aligned} \]
We prove that, under additional boundary conditions, if \(\beta,\gamma\in c^{3+\varepsilon}(\partial\Omega)\), \(\beta>0\), then the realization of the operator \(A\) on a suitable Hilbert space of \(L^2\) type, with a suitable weight on \(\partial\Omega\), is essentially self-adjoint and bounded below.

MSC:

35G15 Boundary value problems for linear higher-order PDEs
35P05 General topics in linear spectral theory for PDEs
47B25 Linear symmetric and selfadjoint operators (unbounded)
47F05 General theory of partial differential operators
Full Text: DOI

References:

[1] R.A. Adams, Sobolev spaces , Academic Press, New York, 1975. · Zbl 0314.46030
[2] P.A. Binding, P.J. Browne and B.A. Watson, Spectral problems for non-linear Sturm-Liouville equations with eigenparameter dependent boundary conditions , Canad. J. Math. 52 (2000), 248-264. · Zbl 0952.34018 · doi:10.4153/CJM-2000-011-1
[3] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations , Grad. Texts Math. 94 , Springer-Verlag, New York, 2000. · Zbl 0952.47036 · doi:10.1007/b97696
[4] A. Favini, G. Ruiz Goldstein, J.A. Goldstein and S. Romanelli, \(C_0\) semigroups generated by second order differential operators with generalized Wentzell boundary conditions , Proc. Amer. Math. Soc. 128 (2000), 1981-1989. JSTOR: · Zbl 0947.47034 · doi:10.1090/S0002-9939-00-05486-1
[5] ——–, Degenerate second order differential operators generating analytic semigroups in \(L^p\) and \(W^1,p\) , Math. Nachr. 238 (2002), 78-102. · Zbl 1022.47030 · doi:10.1002/1522-2616(200205)238:1<78::AID-MANA78>3.0.CO;2-X
[6] ——–, The heat equation with generalized Wentzell boundary condition , J. Evol. Equations 2 (2002), 1-19. · Zbl 1043.35062 · doi:10.1007/s00028-002-8077-y
[7] ——–, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension , J. Math. Anal. Appl. 333 (2007), 219-235. · Zbl 1124.47028 · doi:10.1016/j.jmaa.2006.11.058
[8] A. Favini, G. Ruiz Goldstein, J.A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition , Adv. Differential Equations 11 (2006), 481-510. · Zbl 1149.35051
[9] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order , Springer-Verlag, Berlin, 2001. · Zbl 1042.35002
[10] J.A. Goldstein, Semigroups of linear operators and applications , Oxford University Press, Oxford, 1985. · Zbl 0592.47034
[11] O.A. Ladyzhenskaja, V.A. Solonnikov, and N.N. Uralseva, Linear and quasilinear equations of parabolic type , Trans. Math. Mono. 33 , American Mathematical Society, Providence, R.I., 1967.
[12] O.A. Ladyzhenskaja and N.N. Uralseva, Linear and quasilinear elliptic equations , Academic Press, New York, 1968. · Zbl 0164.13002
[13] H. Triebel, Interpolation theory, function spaces, differential operators , North-Holland Publishing, Amsterdam, 1978. · Zbl 0387.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.