×

Symmetry of positive solutions to Choquard type equations involving the fractional \(p\)-Laplacian. (English) Zbl 1462.35020

Summary: We study symmetric properties of positive solutions to the Choquard type equation \[ (-\Delta)^s_pu+|x|^au=\left(\frac{1}{|x|^{n-\alpha}}*u^q \right)u^r\quad\text{in }\mathbb{R}^n, \] where \(0< s< 1,0< \alpha< n,p\geq 2,q >1, r > 0,a\geq 0\) and \((-\Delta )^s_p\) is the fractional \(p\)-Laplacian. Via a direct method of moving planes, we prove that every positive solution \(u\) which has an appropriate decay property must be radially symmetric and monotone decreasing about some point, which is the origin if \(a> 0\).

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35B09 Positive solutions to PDEs
35R11 Fractional partial differential equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Belchior, P.; Bueno, H.; Miyagaki, O. H.; Pereira, G. A., Remarks about a fractional Choquard equation: ground state, regularity and polynomial decay, Nonlinear Anal., 164, 38-53 (2017) · Zbl 1373.35111 · doi:10.1016/j.na.2017.08.005
[2] Bjorland, C.; Caffarelli, L.; Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian, Commun. Pure Appl. Math., 65, 3, 337-380 (2012) · Zbl 1235.35278 · doi:10.1002/cpa.21379
[3] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 7-9, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[4] Chen, W.; Li, C., Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions, Adv. Math., 335, 735-758 (2018) · Zbl 1395.35055 · doi:10.1016/j.aim.2018.07.016
[5] Chen, Y.-H.; Liu, C., Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29, 6, 1827-1842 (2016) · Zbl 1381.35213 · doi:10.1088/0951-7715/29/6/1827
[6] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Commun. Pure Appl. Math., 59, 3, 330-343 (2006) · Zbl 1093.45001 · doi:10.1002/cpa.20116
[7] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[8] Dai, W.; Fang, Y.; Qin, G., Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differ. Equ., 265, 5, 2044-2063 (2018) · Zbl 1392.35329 · doi:10.1016/j.jde.2018.04.026
[9] d’Avenia, P.; Siciliano, G.; Squassina, M., On fractional Choquard equations, Math. Models Methods Appl. Sci., 25, 8, 1447-1476 (2015) · Zbl 1323.35205 · doi:10.1142/S0218202515500384
[10] Ghimenti, M.; Van Schaftingen, J., Nodal solutions for the Choquard equation, J. Funct. Anal., 271, 1, 107-135 (2016) · Zbl 1345.35046 · doi:10.1016/j.jfa.2016.04.019
[11] Huang, X., Zhang, Z.: Symmetry of positive solutions for the fractional Schrödinger equations with Choquard-type nonlinearities, arXiv e-prints (Jun 2019). arXiv:1906.02388
[12] Jin, L.; Li, Y., A Hopf’s lemma and the boundary regularity for the fractional \(p\)-Laplacian, Discrete Contin. Dyn. Syst., 39, 3, 1477-1495 (2019) · Zbl 1439.35598 · doi:10.3934/dcds.2019063
[13] Le, P., Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185, 123-141 (2019) · Zbl 1419.35216 · doi:10.1016/j.na.2019.03.006
[14] Le, P., Symmetry of singular solutions for a weighted Choquard equation involving the fractional \(p\)-Laplacian, Commun. Pure Appl. Anal., 19, 1, 527-539 (2020) · Zbl 1423.35403 · doi:10.3934/cpaa.2020026
[15] Le, P., Symmetry of solutions for a fractional \(p\)-Laplacian equation of Choquard type, Int. J. Math., 31 (2020) · Zbl 1477.35300 · doi:10.1142/S0129167X20500263
[16] Li, C.; Wu, Z.; Xu, H., Maximum principles and Bôcher type theorems, Proc. Natl. Acad. Sci. USA, 115, 27, 6976-6979 (2018) · Zbl 1440.35343 · doi:10.1073/pnas.1804225115
[17] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 93-105 (1976) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[18] Lions, P.-L., The Choquard equation and related questions, Nonlinear Anal., 4, 6, 1063-1072 (1980) · Zbl 0453.47042 · doi:10.1016/0362-546X(80)90016-4
[19] Lions, P.-L., Compactness and topological methods for some nonlinear variational problems of mathematical physics, Nonlinear Problems: Present and Future, 17-34 (1982), Amsterdam: North-Holland, Amsterdam · Zbl 0496.35079
[20] Liu, X., Symmetry of positive solutions for the fractional Hartree equation, Acta Math. Sci. Ser. B, 39, 6, 1508-1516 (2019) · Zbl 1499.35666 · doi:10.1007/s10473-019-0603-x
[21] Ma, P.; Shang, X.; Zhang, J., Symmetry and nonexistence of positive solutions for fractional Choquard equations, Pac. J. Math., 304, 143-167 (2020) · Zbl 1444.35152 · doi:10.2140/pjm.2020.304.143
[22] Ma, L.; Zhang, Z., Symmetry of positive solutions for Choquard equations with fractional \(p\)-Laplacian, Nonlinear Anal., 182, 248-262 (2019) · Zbl 1411.35273 · doi:10.1016/j.na.2018.12.015
[23] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 2, 455-467 (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[24] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265, 2, 153-184 (2013) · Zbl 1285.35048 · doi:10.1016/j.jfa.2013.04.007
[25] Moroz, V.; Van Schaftingen, J., Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17, 5 (2015) · Zbl 1326.35109 · doi:10.1142/S0219199715500054
[26] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (1954), Berlin: Akademie Verlag, Berlin · Zbl 0058.45503
[27] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relativ. Gravit., 28, 5, 581-600 (1996) · Zbl 0855.53046 · doi:10.1007/BF02105068
[28] Saanouni, T., A note on the fractional Schrödinger equation of Choquard type, J. Math. Anal. Appl., 470, 2, 1004-1029 (2019) · Zbl 1412.35372 · doi:10.1016/j.jmaa.2018.10.045
[29] Wu, L.; Niu, P., Symmetry and nonexistence of positive solutions to fractional \(p\)-Laplacian equations, Discrete Contin. Dyn. Syst., 39, 3, 1573-1583 (2019) · Zbl 1415.35286 · doi:10.3934/dcds.2019069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.