×

Symmetry of solutions for a fractional \(p\)-Laplacian equation of Choquard type. (English) Zbl 1477.35300

Given \(0<s<1\), \(0<\beta<n\), \(p>2\) and \(q>\frac{p}{2}\) this article studies geometric properties of positive solutions to the following type of Choquard equation \[ (-\Delta)^s_pu=\Big( \frac{1}{|x|^{n-\beta}}\ast u^q\Big)u^{q-1}\text{ in }\mathbb{R}^n,\] where \((-\Delta)^s_p\) denotes the fractional \(p\)-Laplacian. To be precise, assuming that a solution \(u\in C^{1,1}_{\mathrm{loc}}(\mathbb{R}^n)\) of the above equation satisfies additionally the integrability assumption \[ \int_{\mathbb{R}^n}\frac{|1+u(x)|^{p-1}}{1+|x|^{n+sp}}\ dx<\infty \] and, for some \(\gamma\) such that \(\min\{\gamma(q-p)+n,\gamma(2q-p)\}>sp+\beta\), \[ u(x) \sim\frac{1}{|x|^{\gamma}}\text{ as }|x|\to\infty,\] the author shows that \(u\) must be radially symmetric and monotone decreasing about some point in \(\mathbb{R}^n\). In this way, the result is a generalization to [L. Ma and Z. Zhang, Nonlinear Anal. 182, 248–262 (2019; Zbl 1411.35273)], where it was necessary to assume \(0<\beta<2\) and \(q>p-1\). As noted by the author, it follows that \(\gamma\) must be positive and it is enough to assume \(u\) is nonnegative.
To prove the main result, the author applies the moving plane method as described by W. Chen and C. Li [Adv. Math., 335, 735–758 (2018; Zbl 1395.35055)] and uses in particular certain maximum principles and boundary estimates for the fractional \(p\)-Laplacian from this reference.

MSC:

35R11 Fractional partial differential equations
35B06 Symmetries, invariants, etc. in context of PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35R09 Integro-partial differential equations
Full Text: DOI

References:

[1] Barrios, B., Montoro, L. and Sciunzi, B., On the moving plane method for nonlocal problems in bounded domains, J. Anal. Math.135(1) (2018) 37-57. · Zbl 1394.35545
[2] Belchior, P., Bueno, H., Miyagaki, O. H. and Pereira, G. A., Remarks about a fractional Choquard equation: Ground state, regularity and polynomial decay, Nonlinear Anal.164 (2017) 38-53. · Zbl 1373.35111
[3] Berestycki, H. and Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.)22(1) (1991) 1-37. · Zbl 0784.35025
[4] Birkner, M., López-Mimbela, J. A. and Wakolbinger, A., Comparison results and steady states for the Fujita equation with fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire22(1) (2005) 83-97. · Zbl 1075.60081
[5] Brändle, C., Colorado, E., de Pablo, A. and Sánchez, U., A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A143(1) (2013) 39-71. · Zbl 1290.35304
[6] Caffarelli, L. and Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations32(7-9) (2007) 1245-1260. · Zbl 1143.26002
[7] Chen, W. and Li, C., Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions, Adv. Math.335 (2018) 735-758. · Zbl 1395.35055
[8] Chen, W., Li, C. and Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math.308 (2017) 404-437. · Zbl 1362.35320
[9] Chen, W., Li, C. and Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math.59(3) (2006) 330-343. · Zbl 1093.45001
[10] Chen, W. and Zhu, J., Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations260(5) (2016) 4758-4785. · Zbl 1336.35089
[11] d’Avenia, P., Siciliano, G. and Squassina, M., On fractional Choquard equations, Math. Models Methods Appl. Sci.25(8) (2015) 1447-1476. · Zbl 1323.35205
[12] Guo, Y., Nonexistence and symmetry of solutions to some fractional Laplacian equations in the upper half space, Acta Math. Sci. Ser. B (Engl. Ed.)37(3) (2017) 836-851. · Zbl 1399.35001
[13] Jarohs, S. and Weth, T., Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (4)195(1) (2016) 273-291. · Zbl 1346.35010
[14] Jin, T. and Xiong, J., A fractional Yamabe flow and some applications, J. Reine Angew. Math.696 (2014) 187-223. · Zbl 1305.53067
[15] Le, P., Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal.185 (2019) 123-141. · Zbl 1419.35216
[16] Le, P., Symmetry and classification of solutions to an integral equation of the Choquard type, C. R. Math. Acad. Sci. Paris357 (2019) 878-888. · Zbl 1427.35328
[17] Le, P., Liouville theorems for an integral equation of Choquard type, Commun. Pure Appl. Anal.19 (2020) 771-783. · Zbl 1428.35665
[18] Le, P., Symmetry of singular solutions for a weighted Choquard equation involving the fractional \(p\)-Laplacian, Commun. Pure Appl. Anal.19 (2020) 527-539. · Zbl 1423.35403
[19] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math.57(2) (1976/77) 93-105. · Zbl 0369.35022
[20] Liu, S., Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal.71(5-6) (2009) 1796-1806. · Zbl 1171.45300
[21] Liu, B. and Ma, L., Radial symmetry results for fractional Laplacian systems, Nonlinear Anal.146 (2016) 120-135. · Zbl 1348.35296
[22] Ma, P. and Zhang, J., Existence and multiplicity of solutions for fractional Choquard equations, Nonlinear Anal.164 (2017) 100-117. · Zbl 1377.35273
[23] P. Ma and J. Zhang, Symmetry and nonexistence of positive solutions for fractional choquard equations, preprint (2017), arXiv:1704.02190. · Zbl 1444.35152
[24] Ma, L. and Zhang, Z., Symmetry of positive solutions for Choquard equations with fractional \(p\)-Laplacian, Nonlinear Anal.182 (2019) 248-262. · Zbl 1411.35273
[25] Ma, L. and Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal.195(2) (2010) 455-467. · Zbl 1185.35260
[26] Moroz, V. and Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theory Appl.19(1) (2017) 773-813. · Zbl 1360.35252
[27] Pekar, S., Untersuchung über die Elektronentheorie der Kristalle (Akademie Verlag, Berlin, 1954). · Zbl 0058.45503
[28] Penrose, R., On gravity’s role in quantum state reduction, Gen. Relativity Gravitation28(5) (1996) 581-600. · Zbl 0855.53046
[29] Villavert, J., Qualitative properties of solutions for an integral system related to the Hardy-Sobolev inequality, J. Differential Equations258(5) (2015) 1685-1714. · Zbl 1310.45006
[30] Wang, Y. and Xiao, J., A uniqueness principle for \(u^p\leq ( - \operatorname{\Delta} )^{\frac{ \alpha}{ 2}}u\) in the Euclidean space, Commun. Contemp. Math.18(6) (2016) 1650019, 17. · Zbl 1351.35256
[31] Xu, D. and Lei, Y., Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Appl. Math. Lett.43 (2015) 85-89. · Zbl 1406.35478
[32] Zhang, L., Yu, M. and He, J., A Liouville theorem for a class of fractional systems in \(\mathbb{R}_+^n\), J. Differential Equations263(9) (2017) 6025-6065. · Zbl 1396.35081
[33] Zhang, W. and Wu, X., Nodal solutions for a fractional Choquard equation, J. Math. Anal. Appl.464(2) (2018) 1167-1183. · Zbl 1482.35262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.