×

Stabilized model reduction for nonlinear dynamical systems through a contractivity-preserving framework. (English) Zbl 1461.93057

Summary: This work develops a technique for constructing a reduced-order system that not only has low computational complexity, but also maintains the stability of the original nonlinear dynamical system. The proposed framework is designed to preserve the contractivity of the vector field in the original system, which can further guarantee stability preservation, as well as provide an error bound for the approximated equilibrium solution of the resulting reduced system. This technique employs a low-dimensional basis from proper orthogonal decomposition to optimally capture the dominant dynamics of the original system, and modifies the discrete empirical interpolation method by enforcing certain structure for the nonlinear approximation. The efficiency and accuracy of the proposed method are illustrated through numerical tests on a nonlinear reaction diffusion problem.

MSC:

93B11 System structure simplification
93C15 Control/observation systems governed by ordinary differential equations
93C20 Control/observation systems governed by partial differential equations
93C10 Nonlinear systems in control theory

Software:

ADOL-C
Full Text: DOI

References:

[1] Aminzare, Z. and Sontag, E.D. (2013). Logarithmic Lipschitz norms and diffusion-induced instability, Nonlinear Analysis: Theory, Methods & Applications83: 31-49. · Zbl 1263.35129
[2] Aminzare, Z. and Sontag, E.D. (2014). Contraction methods for nonlinear systems: A brief introduction and ome open problems, 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 3835-3847.
[3] Astrid, P. (2004). Reduction of Process Simulation Models: A Proper Orthogonal Decomposition Approach, PhD thesis, University of Technology, Eindhoven.
[4] Astrid, P., Weiland, S., Willcox, K. and Backx, T. (2008). Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control53(10): 2237-2251. · Zbl 1367.93110
[5] Banasiak, J. (2020). Logarithmic norms and regular perturbations of differential equations, Annales Universitatis Mariae Curie-Sklodowska, Sectio A: Mathematica73(2): 5-19. · Zbl 1450.34038
[6] Barrault, M., Maday, Y., Nguyen, N.C. and Patera, A.T. (2004). An ‘empirical interpolation’ method: Application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique339(9): 667-672. · Zbl 1061.65118
[7] Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science29(3): 517-525, DOI: 10.2478/amcs-2019-0038. · Zbl 1430.93026
[8] Benda, M. (1998). A central limit theorem for contractive stochastic dynamical systems, Journal of Applied Probability35(1): 200-205. · Zbl 0906.60051
[9] Berkooz, G., Holmes, P. and Lumley, J.L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows, Annual Review of Fluid Mechanics25(1): 539-575.
[10] Blocher, C., Saveriano, M. and Lee, D. (2017). Learning stable dynamical systems using contraction theory, 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South Korea, pp. 124-129.
[11] Carlberg, K., Tuminaro, R. and Boggs, P. (2015). Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM Journal on Scientific Computing37(2): B153-B184, DOI: 10.1137/140959602. · Zbl 1320.65193
[12] Chaturantabut, S. (2017). Temporal localized nonlinear model reduction with a priori error estimate, Applied Numerical Mathematics119: 225-238. · Zbl 1368.65189
[13] Chaturantabut, S., Beattie, C. and Gugercin, S. (2016). Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM Journal on Scientific Computing38(5): B837-B865, DOI: 10.1137/15M1055085. · Zbl 1376.37120
[14] Chaturantabut, S. and Sorensen, D. (2012). A state space error estimate for POD-DEIM nonlinear model reduction, SIAM Journal on Numerical Analysis50(1): 46-63, DOI: 10.1137/110822724. · Zbl 1237.93035
[15] Chaturantabut, S. and Sorensen, D.C. (2010). Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing32(5): 2737-2764, DOI: 10.1137/090766498. · Zbl 1217.65169
[16] Chaturantabut, S. and Sorensen, D.C. (2011). Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Mathematical and Computer Modelling of Dynamical Systems17(4): 337-353. · Zbl 1302.76127
[17] Dahlquist, G. (1959). Stability and error bounds in the numerical integration of ordinary differential equations, Transactions of the Royal Institute of Technology (130). · Zbl 0085.33401
[18] Feng, Z. and Soulaimani, A. (2007). Reduced order modelling based on pod method for 3D nonlinear aeroelasticity, 18th IASTED International Conference on Modelling and Simulation, MS’07, Montreal, Quebec, Canada, pp. 489-494.
[19] Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y. and Calo, V. (2015). Fast multiscale reservoir simulations using POD-DEIM model reduction, SPE Reservoir Simulation Symposium, Houston, TX, USA.
[20] Ghavamian, F., Tiso, P. and Simone, A. (2017). POD-DEIM model order reduction for strain-softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering317: 458-479. · Zbl 1439.74073
[21] Gurka, R., Liberzon, A. and Hetsroni, G. (2006). POD of vorticity fields: A method for spatial characterization of coherent structures, International Journal of Heat and Fluid Flow27(3): 416-423.
[22] Habibi, J., Moshiri, B. and Sedigh, A.K. (2008). Contractive predictive control of mixed logical dynamical hybrid systems, International Journal of Innovative Computing, Information and Control4(6): 1283-1298.
[23] Hairer, E., Nørsett, S.P. and Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edn, Springer, Berlin. · Zbl 0789.65048
[24] Hinze, M., Kunkel, M., Steinbrecher, A. and Stykel, T. (2012). Model order reduction of coupled circuit-device systems, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields25(4): 362-377, DOI: 10.1002/jnm.840.
[25] Hochman, A., Bond, B. and White, J. (2011). A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems, 48th ACM/EDAC/IEEE Design Automation Conference (DAC), New York, NY, USA, pp. 540-545.
[26] Intawichai, S. and Chaturantabut, S. (2020). A numerical study of efficient sampling strategies for randomized singular value decomposition, Thai Journal of Mathematics: 371-385. · Zbl 1463.65072
[27] Isoz, M. (2019). POD-DEIM based model order reduction for speed-up of flow parametric studies, Ocean Engineering186: 106083.
[28] Jouffroy, J. (2005). Some ancestors of contraction analysis, Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, pp. 5450-5455.
[29] Kellems, A.R., Chaturantabut, S., Sorensen, D.C. and Cox, S.J. (2010). Morphologically accurate reduced order modeling of spiking neurons, Journal of Computational Neuroscience28(3): 477-494, DOI: 10.1007/s10827-010-0229-4.
[30] Kunisch, K. and Volkwein, S. (2010). Optimal snapshot location for computing POD basis functions, ESAIM: Mathematical Modelling and Numerical Analysis44(3): 509-529. · Zbl 1193.65113
[31] Lanata, F. and Grosso, A. D. (2006). Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals, Smart Materials and Structures15(6): 1811-1829.
[32] Lohmiller, W. and Slotine, J.J.E. (1998). On contraction analysis for non-linear systems, Automatica34(6): 683-696. · Zbl 0934.93034
[33] Lohmiller, W. and Slotine, J.J.E. (2000a). Control system design for mechanical systems using contraction theory, IEEE Transactions on Automatic Control45(5): 984-989. · Zbl 0973.93020
[34] Lohmiller, W. and Slotine, J.J.E. (2000b). Nonlinear process control using contraction theory, AIChE Journal46(3): 588-596. · Zbl 0973.93020
[35] Lozinskii, S.M. (1958). Error estimates for the numerical integration of ordinary differential equations. Part I, Izvestiya Vysshikh Uchebnykh Zavedenii: Matematika6(5): 52-90, (in Russian). · Zbl 0198.21202
[36] Peigné, M. and Woess, W. (2011). Stochastic dynamical systems with weak contractivity properties. II: Iteration of Lipschitz mappings, Colloquium Mathematicum125(1): 55-81. · Zbl 1260.37026
[37] Pham, Q.-C., Tabareau, N. and Slotine, J.-J. (2009). A contraction theory approach to stochastic incremental stability, IEEE Transactions on Automatic Control54(4): 816-820. · Zbl 1367.60073
[38] Rewieński, M.J. (2003). A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
[39] Rewienski, M. and White, J. (2001). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, International Conference on Computer-Aided Design, San Jose, CA, USA, p. 252.
[40] Rewienski, M. and White, J. (2003). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, IEEE Transactions Computer-Aided Design of Integrated Circuits and Systems22(2): 155-170.
[41] Rewienski, M. and White, J. (2006). Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra and Its Applications415(2-3): 426-454. · Zbl 1105.93020
[42] Russo, G. and di Bernardo, M. (2011). On contraction of piecewise smooth dynamical systems, IFAC Proceedings Volumes44(1): 13299-13304.
[43] Sanjuan, A., Rotondo, D., Nejjari, F. and Sarrate, R. (2019). An LMI-based heuristic algorithm for vertex reduction in LPV systems, International Journal of Applied Mathematics and Computer Science29(4): 725-737, DOI: 10.2478/amcs-2019-0054. · Zbl 1430.93024
[44] Schenone, E. (2014). Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology, Thesis, Université Pierre et Marie Curie Paris VI, Paris, https://tel.archives-ouvertes.fr/tel-01092945.
[45] Simpson-Porco, J.W. and Bullo, F. (2014). Contraction theory on Riemannian manifolds, Systems & Control Letters65: 74-80. · Zbl 1285.93031
[46] Söderlind, G. (1986). Bounds on nonlinear operators in finite-dimensional Banach spaces, Numerische Mathematik50(1): 27-44, DOI: 10.1007/BF01389666. · Zbl 0585.47047
[47] Söderlind, G. (2006). The logarithmic norm: History and modern theory, BIT Numerical Mathematics46(3): 631-652, DOI: 10.1007/s10543-006-0069-9. · Zbl 1102.65088
[48] Sontag, E.D. (2010). Contractive systems with inputs, in J.C. Willems et al. (Eds), Perspectives in Mathematical System Theory, Control and Signal Processing, Springer, Berlin, pp. 217-228, DOI: 10.1007/978-3-540-93918-4_20. · Zbl 1198.93097
[49] Stanko, Z.P., Boyce, S.E. and Yeh, W.W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using POD and DEIM, Advances in Water Resources97: 130-143.
[50] Sukuntee, N. and Chaturantabut, S. (2019). Model order reduction for Sine-Gordon equation using POD and DEIM, Thai Journal of Mathematics: 222-256. · Zbl 1463.65212
[51] Sukuntee, N. and Chaturantabut, S. (2020). Parametric nonlinear model reduction using k-means clustering for miscible flow simulation, Journal of Applied Mathematics2020: 1-12, Article ID 3904606. · Zbl 1499.76077
[52] Ştefănescu, R. and Navon, I.M. (2013). POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics237: 95-114, DOI: 10.1016/j.jcp.2012.11.035. · Zbl 1286.76106
[53] Volkwein, S. (2008). Model reduction using proper orthogonal decomposition, Lecture notes, University of Konstanz, Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf.
[54] Walther, A., Griewank, A. and Vogel, O. (2003). ADOL-C: Automatic differentiation using operator overloading in C++, PAMM: Proceedings in Applied Mathematics and Mechanics2(1): 41-44. · Zbl 1201.68161
[55] Wang, D. and Xiao, A. (2015). Dissipativity and contractivity for fractional-order systems, Nonlinear Dynamics80(1-2): 287-294. · Zbl 1345.37086
[56] Wirtz, D., Sorensen, D. C. and Haasdonk, B. (2014). A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing36(2): A311-A338. · Zbl 1312.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.