×

Parametric nonlinear model reduction using \(K\)-means clustering for miscible flow simulation. (English) Zbl 1499.76077

Summary: This work considers the model order reduction approach for parametrized viscous fingering in a horizontal flow through a 2D porous media domain. A technique for constructing an optimal low-dimensional basis for a multidimensional parameter domain is introduced by combining \(K\)-means clustering with proper orthogonal decomposition (POD). In particular, we first randomly generate parameter vectors in multidimensional parameter domain of interest. Next, we perform the \(K\)-means clustering algorithm on these parameter vectors to find the centroids. POD basis is then generated from the solutions of the parametrized systems corresponding to these parameter centroids. The resulting POD basis is then used with Galerkin projection to construct reduced-order systems for various parameter vectors in the given domain together with applying the discrete empirical interpolation method (DEIM) to further reduce the computational complexity in nonlinear terms of the miscible flow model. The numerical results with varying different parameters are demonstrated to be efficient in decreasing simulation time while maintaining accuracy compared to the full-order model for various parameter values.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage

References:

[1] Homsy, G., Viscous fingering in porous media, Annual Review of Fluid Mechanics, 19, 271-311 (2003) · doi:10.1146/annurev.fl.19.010187.001415
[2] Sesini, P.; de Souza, D. A. F.; Coutinho, A. L. G. A., Finite element simulation of viscous fingering in miscible displacements at high mobility-ratios, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32, 3, 292-299 (2010) · doi:10.1590/S1678-58782010000300013
[3] Brantson, E. T.; Ju, B.; Wu, D., Numerical simulation of viscous fingering and flow channeling phenomena in perturbed stochastic fields: finite volume approach with tracer injection tests, Arabian Journal for Science and Engineering, 43, 11, 6333-6353 (2018) · doi:10.1007/s13369-018-3070-0
[4] Abbaszadeh, M.; Dehghan, M., Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique, Applied Numerical Mathematics, 150, 274-294 (2020) · Zbl 1444.76083 · doi:10.1016/j.apnum.2019.08.025
[5] Dolci, V.; Arina, R., Proper orthogonal decomposition as surrogate model for aerodynamic optimization, International Journal of Aerospace Engineering, 2016 (2016) · doi:10.1155/2016/8092824
[6] Chang, G. H.; Schirmer, C. M.; Modarres-Sadeghi, Y., A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition, Journal of Biomechanics, 54, 33-43 (2017) · doi:10.1016/j.jbiomech.2017.01.035
[7] Christ, P.; Sattelmayer, T., Reduced order modelling of flow and mixing in an automobile hvac system using proper orthogonal decomposition, Applied Thermal Engineering, 133, 211-223 (2018) · doi:10.1016/j.applthermaleng.2018.01.023
[8] Karasözen, B.; Akkoyunlu, C.; Uzunca, M., Model order reduction for nonlinear Schrödinger equation, Applied Mathematics and Computation, 258, 509-519 (2015) · Zbl 1339.65123 · doi:10.1016/j.amc.2015.02.001
[9] Liberge, E.; Hamdouni, A., Reduced order modelling method via proper orthogonal decomposition (pod) for flow around an oscillating cylinder, Journal of Fluids and Structures, 26, 2, 292-311 (2010) · doi:10.1016/j.jfluidstructs.2009.10.006
[10] Dehghan, M.; Abbaszadeh, M., A combination of proper orthogonal decomposition-discrete empirical interpolation method (pod-deim) and meshless local rbf-dq approach for prevention of groundwater contamination, Computers and Mathematics with Applications, 75, 4, 1390-1412 (2018) · Zbl 1409.76095 · doi:10.1016/j.camwa.2017.11.012
[11] Bremer, J.; Goyal, P.; Feng, L.; Benner, P.; Sundmacher, K., Pod-deim for efficient reduction of a dynamic 2d catalytic reactor model, Computers and Chemical Engineering, 106, 777-784 (2017) · doi:10.1016/j.compchemeng.2017.02.032
[12] Ghavamian, F.; Tiso, P.; Simone, A., Pod-deim model order reduction for strain-softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering, 317, 458-479 (2017) · Zbl 1439.74073 · doi:10.1016/j.cma.2016.11.025
[13] Mordhorst, M.; Strecker, T.; Wirtz, D.; Heidlauf, T.; Röhrle, O., Pod-deim reduction of computational emg models, Journal of Computational Science, 19, 86-96 (2017) · doi:10.1016/j.jocs.2017.01.009
[14] Ştefănescu, R.; Sandu, A.; Navon, I. M., Pod/deim reduced-order strategies for efficient four dimensional variational data assimilation, Journal of Computational Physics, 295, 569-595 (2015) · Zbl 1349.76535 · doi:10.1016/j.jcp.2015.04.030
[15] Bova, W.; Lappano, E.; Catera, P. G.; Mundo, D., Development of a parametric model order reduction method for laminated composite structures, Composite Structures, 243, article 112219 (2020) · doi:10.1016/j.compstruct.2020.112219
[16] van Ophem, S.; Deckers, E.; Desmet, W., Parametric model order reduction without a priori sampling for low rank changes in vibro-acoustic systems, Mechanical Systems and Signal Processing, 130, 597-609 (2019) · doi:10.1016/j.ymssp.2019.05.035
[17] Bui-Thanh, T.; Willcox, K.; Ghattas, O., Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA Journal, 46, 10, 2520-2529 (2008) · doi:10.2514/1.35850
[18] Poussot-Vassal, C.; Sipp, D., Parametric reduced order dynamical model construction of a fluid flow control problem, IFAC-Papers OnLine, 48, 26, 133-138 (2015) · doi:10.1016/j.ifacol.2015.11.126
[19] Swernath, S.; Pushpavanam, S., Viscous fingering in a horizontal flow through a porous medium induced by chemical reactions under isothermal and adiabatic conditions, The Journal of Chemical Physics, 127, 20, article 204701 (2007) · doi:10.1063/1.279999910.1063/1.2799999
[20] Chaturantabut, S.; Sorensen, D., Application of pod and deim on dimension reduction of non-linear miscible viscous fingering in porous media, Mathematical and Computer Modelling of Dynamical Systems, 17, 4, 337-353 (2011) · Zbl 1302.76127 · doi:10.1080/13873954.2011.547660
[21] Volkwein, S., Proper orthogonal decomposition: theory and reduced-order modelling, Lecture notes (2013), University of Konstanz, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf
[22] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing, 32, 5, 2737-2764 (2010) · Zbl 1217.65169 · doi:10.1137/090766498
[23] Wirtz, D.; Sorensen, D. C.; Haasdonk, B., A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing, 36, 2, A311-A338 (2014) · Zbl 1312.65127 · doi:10.1137/12089904210.1137/120899042
[24] Chaturantabut, S.; Sorensen, D. C., A state space error estimate for pod-deim nonlinear model reduction, SIAM Journal on Numerical Analysis, 50, 1, 46-63 (2012) · Zbl 1237.93035 · doi:10.1137/110822724
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.