×

Convergence of measures on compactifications of locally symmetric spaces. (English) Zbl 1461.60005

Following the works of S. Mozes and N. Shah [Ergodic Theory Dyn. Syst. 15, No. 1, 149–159 (1995; Zbl 0818.58028)] and A. Eskin et al. [Ann. Math. (2) 143, No. 2, 253–299 (1996; Zbl 0852.11054); Geom. Funct. Anal. 7, No. 1, 48–80 (1997; Zbl 0872.22009)], given a sequence \((\mu_n)_{n \in \mathbb{N}} = (\mu_{H_n, g_n})_{n \in \mathbb{N}}\) of homogeneous measures associated with sequences \((H_n)_{n\in \mathbb{N}}\) of subgroups of \(G\) and sequences \((g_n)_{n \in \mathbb{N}}\) of elements of \(G\), under natural assumptions on \((H_n)_{n\in \mathbb{N}}\) and \((g_n)_{n \in \mathbb{N}}\), the weak limit of \((\mu_n)_n\), in the space of probability measures, it is homogeneous itself. If \(\mu\) is the weak limit of \((\mu_n)_n\) in the space of probability measures on the one-point-compactification \(\Gamma\setminus G \cup \{\infty\}\) then \(\mu\) is either a homogeneous probability measure on \(\Gamma\setminus G\), or equal to the Dirac delta measure at infinity.
In this paper, the authors conjecture that given a sequence of homogeneous probability measures on the maximal Satake compactification of an arithmetic locally symmetric space \(S= \Gamma \setminus G /K\), any weak limit is homogeneous with support contained in precisely one of the boundary components (including \(S\) itself). They study this conjecture and they prove it in a number of cases.

MSC:

60B10 Convergence of probability measures
28A33 Spaces of measures, convergence of measures
53C35 Differential geometry of symmetric spaces
22F30 Homogeneous spaces

References:

[1] Baily, W.; Borel, A., Compactifications of arithmetic quotients of bounded symmetric domains, Ann. Math., 84, 442-528 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[2] Borel, A.; Ji, L., Compactifications of Symmetric and Locally Symmetric Spaces (2006), Boston: Birkhäuser, Boston · Zbl 1100.22001
[3] Borel, A.: Introduction Aux Groupes Arithmétiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341. Hermann, Paris (1969) · Zbl 0186.33202
[4] Brown, KS, Buildings (1989), New York: Springer, New York · Zbl 0715.20017 · doi:10.1007/978-1-4612-1019-1
[5] Borel, A.; Tits, J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27, 55-150 (1965) · Zbl 0145.17402 · doi:10.1007/BF02684375
[6] Clozel, L.; Ullmo, E., Equidistribution de sous-variétés spéciales, Ann. Math., 161, 1571-1588 (2005) · Zbl 1099.11031 · doi:10.4007/annals.2005.161.1571
[7] Clozel, L.; Ullmo, E., Équidistribution de mesures algébriques, Compos. Math., 141, 5, 1255-1309 (2005) · Zbl 1077.22014 · doi:10.1112/S0010437X0500148X
[8] Dani, SG; Margulis, GA, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 101, 1, 1-17 (1991) · Zbl 0731.22008 · doi:10.1007/BF02872005
[9] Eskin, A.; Mozes, S.; Shah, N., Unipotent flows and counting lattice points on homogeneous varieties, Ann. Math. (2), 143, 2, 253-299 (1996) · Zbl 0852.11054 · doi:10.2307/2118644
[10] Eskin, A.; Mozes, S.; Shah, N., Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., 7, 1, 48-80 (1997) · Zbl 0872.22009 · doi:10.1007/PL00001616
[11] Klingler, B.; Yafaev, A., The André-Oort conjecture, Ann. Math. (2), 180, 3, 867-925 (2014) · Zbl 1377.11073 · doi:10.4007/annals.2014.180.3.2
[12] Margulis, GA, Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math, 304, 10, 249-253 (1987) · Zbl 0624.10011
[13] Milne, JS, Introduction to Shimura varieties, Harmonic Analysis, the Trace Formula, and Shimura Varieties, Volume 4 of Clay Mathematics Proceedings, 265-378 (2005), Providence: American Mathematical Society, Providence · Zbl 1148.14011
[14] Mozes, S.; Shah, N., On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dyn. Syst., 15, 1, 149-159 (1995) · Zbl 0818.58028 · doi:10.1017/S0143385700008282
[15] Ratner, M., On Raghunathan’s measure conjecture, Ann. Math. (2), 134, 3, 545-607 (1991) · Zbl 0763.28012 · doi:10.2307/2944357
[16] Ratner, M., Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J., 63, 1, 235-280 (1991) · Zbl 0733.22007 · doi:10.1215/S0012-7094-91-06311-8
[17] Ronan, M., Lectures on Buildings (2009), Chicago: University of Chicago Press, Chicago · Zbl 1190.51008
[18] Serre, J.-P.: Complète réductibilité. Astérisque, (299): Exp. No. 932, viii, 195-217, 2005. Séminaire Bourbaki. Vol. (2003/2004) · Zbl 1156.20313
[19] Springer, T.A.: Reductive groups. In: Automorphic forms, representations and \(L\)-functions, Proceedings of Symposia in Pure Mathematics Proceedings of Symposia in Pure Mathematics (1979) · Zbl 0416.20034
[20] Tits, J., Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics (1974), Berlin: Springer, Berlin · Zbl 0295.20047
[21] Ullmo, E., Equidistribution de sous-variétés spéciales II, J. Reine Angew. Math., 606, 193-216 (2007) · Zbl 1137.11043
[22] Ullmo, E.; Yafaev, A., Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture, Ann. Math. (2), 180, 3, 823-865 (2014) · Zbl 1328.11070 · doi:10.4007/annals.2014.180.3.1
[23] Wei, Y.; Zou, YM, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Algebra Appl., 521, 283-298 (2017) · Zbl 1359.15004 · doi:10.1016/j.laa.2017.01.036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.